期刊文献+

基于进化算法和CFD技术的离心泵低稠度导叶的优化设计 被引量:4

Optimization Design of the Low Solidity Vane for the Centrifugal Pump Using Evolutionary Algorithms and CFD Technique
下载PDF
导出
摘要 结合离心泵导叶型线参数化方法、进化优化算法和Navier-Stokes方程求解技术对传统导叶进行了低稠度导叶优化设计。优化设计得到了稠度分别是0.89和0.65的导叶型线,数值验证表明:两种低稠度导叶的静压回复系数均高于初始设计。结合离心叶轮和优化设计得到的两种低稠度导叶进行了整个离心泵水力性能数值验证,计算结果表明:稠度是0.89的导叶的离心泵水力性能优于初始设计,而稠度是0.65的导叶的离心泵水力性能低于初始设计。研究结果表明对于初始设计的离心泵,采用优化设计得到的稠度是0.89的导叶具有更加紧凑的设计并且可以满足初始设计的要求。 This paper presents numerical procedure in which a diffuser profile description code is combined with a blade-to-blade solution and Evolutionary Algorithms (EA) optimization method for redesigning the conventional vane into Low Solidity Vane Diffuser(LSD) for centrifugal pump. Vane blade with 0.89 and 0.65 in solidity have been designed without thinking of interaction of impeller and vane. The static pressure recovery coefficient of designed LSV is higher than the original one. Using 3- D numerical simulation method, the hydrodynamic performance is calculated for centrifugal pump with the designed and original vanes. The obtained results show that the centrifugal pump with vane of 0.89 in solidity has improved head and efficiency, especially in over capacity range. The centrifugal pump with the vane of 0.65 in solidity has lower head and efficiency than the original one in low discharge, whereas higher head and efficiency than the original one in over capacity. Designed vane of 0. 89 in solidity is the best tradeoff design for the original pump. The obtained results show that the present design tool is a simple and feasible algorithm for hydraulic turbomachinery design.
机构地区 西安工业大学
出处 《流体机械》 CSCD 北大核心 2007年第3期21-24,9,共5页 Fluid Machinery
关键词 离心泵 低稠度导叶 进化算法 优化设计 centrifugal pump low solidity vane diffuser evolutionary algorithm optimization design
  • 相关文献

参考文献7

  • 1Senoo Y.Japanese Patent Application Disclosure[P].119411/78 (in Japanese),1978.
  • 2Senoo Y.Low Solidity Cascade Diffuser for Wide Flow Range Centrifugal Blowers,Flow in Centrifugal Compressor[R].VKI Lecture Series,1984.
  • 3Hayami H,Senoo Y,Utsunomiya K.Application of a Low Solidity Cascade Diffuser to Transonic Centrifugal Compressor[J].ASME Journal of Turbomachinery,1990,112:25-29.
  • 4Goldberg D E.Genetic Algorithms in Search,Optimization and Machine Learning[M].Addison-Wesley,Reading,MA,1989.
  • 5Michalewicz Z.Genetic Algorithms + Data Structures= Evolution Programs[M].Springer-Verlag,1996.
  • 6李强,周济.连续解空间的复合遗传算法[J].科学通报,1998,43(24):2662-2668. 被引量:9
  • 7Quagliarella D,Vicini A.GAs for Aerodynamic Shape Design Ⅰ:General Issues,Shape Parameterization problems and Hybridization Techniques[R].Genetic Algorithms for Optimization in Aeronautics and Turbomachinery,1999 -2000 VKI Lecture Series,2000.

二级参考文献5

  • 1刘勇,非数值并行算法.2,1995年
  • 2Qi Xiaofeng,IEEE Trans Neural Netw,1994年,5卷,1期,102页
  • 3刘惟信,机械最优化设计,1994年
  • 4郑兆昌,机械振动.中,1986年
  • 5郁永熙(译),实数最优化设计,1985年

共引文献8

同被引文献29

  • 1李华昌,谢淑兰,易忠胜.遗传算法的原理与应用[J].矿冶,2005,14(1):87-90. 被引量:43
  • 2肖若富,王正伟.基于组合优化策略的离心泵叶轮优化设计[J].清华大学学报(自然科学版),2006,46(5):700-703. 被引量:8
  • 3郑金华,蒋浩,邝达,史忠植.用擂台赛法则构造多目标Pareto最优解集的方法[J].软件学报,2007,18(6):1287-1297. 被引量:54
  • 4DEB K, PRATAB A, ARGRAWAL S, et al. A fast elitist non-dominated sorting genetic algorithm for multiobjective optimization:NSGA-II [C] // Proceedings of the Parallel Problem Solving from Nature VI Conference. Pa-ris: IEE Comuter Society Press, 2000.
  • 5郑金华.基于Pareto最优的多目标进化算法及其应用[D].北京:中科院计算技术研究所,2005.
  • 6DEB K, PRATAB A, ARGRAWAL S, et al. A fast and elitist multi-objective genetic algorithm.- NSGA-II [J].IEEE Trans. Evolutionary Computation, 2002,6(2) :182-- 197.
  • 7JENSEN M T. Reducing the run-time complexity of multi-objective EAs: The NSGA-II and other algorithms [J]. IEEE Transactions on Evolutionary Computation, 2003,7 (1) : 503 -- 515.
  • 8Queipo N V, Haftka R T, Shyy W, et al. Surrogatebased analysis and optimization [ J ]. Progress in Aerospace Sciences, 2005, 41 (1) :1 -28.
  • 9Gehrer A,Schmidl R, Sadnik D. Kaplan turbine runner optimization by numerical flow simulation (CFD) and an evolutionary algorithm [ C] //Proceedings of the 23rd IAHR Symposium on Hydraulic Machinery and Systems. Yokohama, Japan: [ s. n. ], 2006.
  • 10Kazuyuki N,Takanori N, Kaneo S. Design optimization of a low specific speed Francis turbine runner[ C ]//Proceedings of the 24th IAHR Sympositum on Hydraulic Machinery and Systems. Fozdoiguassu, Brazil: [ s. n. ], 2008, 27 -31.

引证文献4

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部