摘要
We present here that F(E,F), the space of all r-compact operators from E into F, is a generalised sublattice of L^r(E, F) for arbitary Banach lattices E and F, and that the characterization of the regular norm on F(E, F) is order continuous. Some conditions for F(E, F) to be a KB-space or a band in .L(E, F) are also provided.
We present here that F(E,F), the space of all r-compact operators from E into F, is a generalised sublattice of L^r(E, F) for arbitary Banach lattices E and F, and that the characterization of the regular norm on F(E, F) is order continuous. Some conditions for F(E, F) to be a KB-space or a band in .L(E, F) are also provided.