期刊文献+

基于小波域统计建模及显著性修正的SAR图像相干斑抑制 被引量:1

SAR Speckle Denoising Based on Statistic Model Combined with Medication to Significant Wavelet Significant Coefficient
下载PDF
导出
摘要 该文提出了一种基于小波域统计建模与小波系数显著性修正相结合的斑点噪声滤波方法。这种方法首先通过对数变换将乘性噪声模型转化为加性噪声模型,对对数变换后的图像进行小波变换并对小波域的高频子带系数用混合高斯模型与隐马尔可夫树模型进行建模,并采用EM算法来估计模型参数。在模型参数估计的基础上;利用贝叶斯最小均方误差准则来估计“干净”的小波系数。在此基础上引入基于显著性准则的小波系数修正,最后通过小波逆变换与指数变换获得抑制斑点噪声后的图像。用真实SAR图像实验表明,该文提出的方法能够有效地抑制斑点噪声,同时能够很好地保存边缘细节结构与强散射中心。 This paper proposes a new method based on statistical model of wavelet coefficients combined with modification to them according to significant coefficient rule. In the method, wavelet coefficients of logarithmic image are firstly modeled as mixture density of t-;vo Gaussian distributions with zero mean. In order to incorporate the spatial dependencies into the denoising procedure, Hidden Markov Tree (HMT) model is explored and Expectation Maximization (EM) algorithm is proposed to estimate model parameters. Bayes Minimum Mean Square Error (Bayes MMSE)method is used to estimate the wavelet coefficients free of noise. The wavelet coefficients are updated according to a rule whether the coefficient is a significant one or not. 2D inverse DWT and exponential transform are performed on the updated coefficients to get denoised SAR image. Experimental Results using real SAR images demonstrate that the method can not only reduce the speckle but also preserve edges and radiometric scatter points.
出处 《电子与信息学报》 EI CSCD 北大核心 2007年第3期513-516,共4页 Journal of Electronics & Information Technology
关键词 图像处理 相干斑抑制 小波域 统计模型 显著性修正 Image processing Speckle denoising Wavelet domain Statistic model Modification according to significant coefficient rule
  • 相关文献

参考文献7

  • 1Xie Hua,Pierce L E,and Ulaby F T.SAR speckle reduction using wavelet denoising and Markov random field modeling.IEEE Trans.on Geosciences and Remote Sensing,2002,10(4):2196-2211.
  • 2Donoho D and Johnstone 1.Adapting to unknown smoothness via wavelet shrinkage.J.of American Statistic Association,1995,90(12):1200-1224.
  • 3Malfait M and Roose D.Wavelet-based image denoising using a Markov random field a priori model.IEEE Trans.on Image Processing,1997,6(4):549-565.
  • 4Mihcak M K,Kozintsev I,Ramchandran K,and Moulin P.Low complexity image denoising based on statistical modeling of wavelet coefficients.IEEE Signal Processing Letters,1999,6(12):300-303.
  • 5Crouse M S,Nowak R D,and Baraniuk R G.Wavelet-based statistical signal processing using hidden Markov models.IEEE Trans.on Signal Processing,1998,46(4):886-902.
  • 6Romberg J K,Choi H,and Baraniuk R G.Bayesian tree structured image modeling using wavelet-domain Hidden Markov models.IEEE Trans.on Image Processing,2001,10(7):1056-1068.
  • 7Ingrid Daubechies 著,李建平,杨万年译.小波十讲.北京:国防工业出版社,2004.

同被引文献22

  • 1金海燕,焦李成,刘芳.基于Curvelet域隐马尔可夫树模型的SAR图像去噪[J].计算机学报,2007,30(3):491-497. 被引量:22
  • 2Lu J. Marine oil spill detection, statistics and mapping with ERS SAR imagery in south-east Asia[J]. International Journal of Remote Sensing,2003,24(15): 3013-3032.
  • 3Michele Vespe,Harm Greidanus. SAR image quality assessment and indicators for vessel and oil spil detection[J]. IEEE Transactions on Geoscienceand Remote sensing, 2012,50(11): 4726 —4734.
  • 4Fanny G A, Grgoire M, Fabrice C,et al. Operational oil-slick characterization by SAR imagery and synergistic data[J]. IEEE Journal of OceanicEngineering, 2005,30(3) : 487 — 495.
  • 5Migliaccio M, Gambardella A,Tranfaglia M. SAR polarimetry to observe oil spills[J]. IEEE Transactions on Geoscience and Remote Sensing,2007, 45(2): 506 — 511.
  • 6Sol berg A H S.Bbrekke C. Oil spill detection in Radarsat and Envisat SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing.2007,45(3): 746-755.
  • 7Brekke C,Solbergb A H S. Oil spill detection by satellite remote sensing[J]. Remote Sensing of Environment, 2005, 95(1) : 1 — 13.
  • 8Francesco Bandiera,Giuseppe Ricci. Slicks detection on the sea surface based upon polarimetric SAR data[J], IEEE Geosciences and Remote Sens-ing Letters,2005,2(3): 342 — 346.
  • 9Fabio Del Frate, Andrea Petrocchi,Juerg Lichtenegger, et al. Neural networks for oil spill detection using ERS— SAR data[J]. IEEE Transac-tions on Geoscience and Remote Sensing,2000, 38(5) : 2282—2287.
  • 10Topouzelis K,Karathanassi K,Pavlakis V,et al. Dark formation detection using neural networks[J]. International Journal of Remote Sensing,2008, 29(15-16): 4705-4720.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部