摘要
本文基于Hamilton-Jacobi方程的小波Galerkin近似和微分算子的小波表示,讨论一维双曲型守恒律方程初值问题的Daubechies小波解.由于小波在空间和时间上的局部性,本方法适用于处理具有奇异解的问题,可以有效的防止数值振荡.数值试验的结果表明,本方法是可行的.
In this paper, the initial problem of one-dimensional hyperbolic conservation law solved by Daubechies wavelets is discussed. The explicit discrete scheme of the above problem is given based on wavelet Galerkin method of Hamilton-Jacobi equation and the wavelet representation of differential operators. Because the wavelets have the time-frequency local property, the new scheme adapt to deal with singularities. Numerical tests are satisfactory.
出处
《数值计算与计算机应用》
CSCD
2007年第1期11-17,共7页
Journal on Numerical Methods and Computer Applications
基金
国家自然科学基金
批准号为10571178.