期刊文献+

双曲型守恒律方程的小波解法 被引量:1

WAVELET METHOD FOR HYPERBOLIC CONSERVATION LAWS
原文传递
导出
摘要 本文基于Hamilton-Jacobi方程的小波Galerkin近似和微分算子的小波表示,讨论一维双曲型守恒律方程初值问题的Daubechies小波解.由于小波在空间和时间上的局部性,本方法适用于处理具有奇异解的问题,可以有效的防止数值振荡.数值试验的结果表明,本方法是可行的. In this paper, the initial problem of one-dimensional hyperbolic conservation law solved by Daubechies wavelets is discussed. The explicit discrete scheme of the above problem is given based on wavelet Galerkin method of Hamilton-Jacobi equation and the wavelet representation of differential operators. Because the wavelets have the time-frequency local property, the new scheme adapt to deal with singularities. Numerical tests are satisfactory.
出处 《数值计算与计算机应用》 CSCD 2007年第1期11-17,共7页 Journal on Numerical Methods and Computer Applications
基金 国家自然科学基金 批准号为10571178.
关键词 双曲型守恒律方程 HAMILTON-JACOBI方程 小波解法 DAUBECHIES小波 Hyperbolic conservation law, Hamilton-Jacobi equation, Wavelet method, Daubechies wavelet
  • 相关文献

参考文献10

  • 1I. Daubechies. Ten Lectures on Wavelets. SIAM, 1992.
  • 2A. Latto, H. Resnikoff and E.Tenenbaum, The Evaluation of Connection coefficients of compactly supported wavelets, in Proceedings of the French-USA Workshop on Wavelets and Turbulence,Princeton, New York, 1991, Springer-Verlag.
  • 3G. Beylkin, On the Representation of Operators in Base of Compactly Supported Wavelets, SIAM J.Numerical Analysis, Vol. 6 (1992), 1716-1740.
  • 4Mats Holmstrom, Johan Walden, Adaptive Wavelet Methods for Hyperbolic PDEs, J. Sci. Comput, 13 (1998), 19-49.
  • 5吴勃英,邓中兴.热传导方程的小波解法[J].应用数学学报,2001,24(1):10-16. 被引量:14
  • 6S. Kelly, Gibbs Phenomenon for Wavelets,Applied and Computational Harmonic Analysis, Vol.3(1996), 72-81.
  • 7W. Sweldens, R. Piessens, Quadrature formula and asymptotic error expansions for wavelet approximations of smooth functions,SIAM J.Numerical Analysis, Vol. 31(1994), 1240-1264.
  • 8M. G. Crandal, P. L. Lions, Two Approximations of Solutions of Hamilton-Jacobi Equations,Math. Comp., Vol. 43(1984), 1-19.
  • 9唐玲艳,宋松和.Hamilton-Jacobi方程的小波Galerkin方法[J].计算数学,2006,28(4):401-408. 被引量:4
  • 10蔚喜军,符鸿源,常谦顺.用有限元方法求解双曲守恒律(英文)[J].计算物理,1999,16(5):457-466. 被引量:3

二级参考文献15

  • 1[1]Daubechies I. Orthogonal Bases of Compactly Supported Wavelets. Comm. Pure. Appl. Math., 1988,7:909-996
  • 2[2]Beylkin G. On the Representation of Operators in Bases of Compactly Supported Wavelets. SIAM J. Numer, Anal., 1992, 6:1716-1740
  • 3[3]Glowinski R, Lawton W. Wavelet Solution of Linear and Nonlinear Elliptic, Parabolic, and Hyperbolic Problems in One Space Dimension. Comp. Math. Appl. Sciences and Engineering, SIAM Publ.,Philadelphia, PA, 1990
  • 4Tang Tao,Math Comput,1997年,66卷,495页
  • 5Shu C W,J Comput Phys,1989年,83卷,32页
  • 6Shu C W,J Comput Phys,1988年,77卷,439页
  • 7Shu C W,Math Comput,1987年,49卷,105页
  • 8Shu C W,Math Comput,1987年,49卷,123页
  • 9I.Daubechies,Ten Lectures on Wavelets,SLAM,1992.
  • 10A.Latto,H.Resnikoff and E.Tenenbaum,The Evaluation of Connection coefficients of compactly supported wavelets,in Proceedings of the French-USA Workshop on Wavelets and Turbulence,Princeton,New York,1991,Springer-Verlag.

共引文献18

同被引文献5

  • 1唐玲艳,宋松和.Hamilton-Jacobi方程的小波Galerkin方法[J].计算数学,2006,28(4):401-408. 被引量:4
  • 2Liang Z H,Stephen S T Yau.Wavelet-Galerkin method for the Kolmogorov equation[J].Mathematical and Computer Modelling,2004,40:1093-1121.
  • 3Rathish Kumar B V,Mani Methr.Time-accurate solutions of Korteweg-de Vries equation using wavelet Galerkin method[J].Applied Mathematics and Computation,2005,162:447-460.
  • 4Sonia M Gomes,Elsa Cortina.Convergence estimales for the wavelet Galerkin method[J].SIAM J.Numer.Anal.,1996,33:149-161.
  • 5DAUBECHIES I.小波十讲[M].李建平译.北京:国防工业出版社出版,2004.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部