期刊文献+

DFT Studies on Non-IPR C_(68) and Endohedral Fullerene Sc_3N@C_(68) 被引量:3

DFT Studies on Non-IPR C_(68) and Endohedral Fullerene Sc_3N@C_(68)
下载PDF
导出
摘要 Density functional theory (DFT) calculations on two isomers of C68 with the minimal number of fused pentagon pairs, its anions and Sc3N as well as Sc3N@C68 (6140) metallofullerene were carded out at the B3LYP/6-31G^* level. The optimized configurations and electrostatic potential distributions have been obtained. The calculated results show that the electrostatic potentials of C68 (6140) inside the sphere have three minima in the middle of the double bonds at fusion of two hexagonal rings. In contrast, potential minimum Vmin(r) of C68 (6275) inside the sphere occurs at the center of the sphere. Concerning the two isomers of C68, the largest regions with the most negative MEP outside the sphere are both localized in the neighborhood of pentagon-pentagon vertex fusions. They constitute the most probable active sites in chemical reactions. Our results present a reasonable explanation for the bonding between scandium atoms and fullerene cage. Density functional theory (DFT) calculations on two isomers of C68 with the minimal number of fused pentagon pairs, its anions and Sc3N as well as Sc3N@C68 (6140) metallofullerene were carded out at the B3LYP/6-31G^* level. The optimized configurations and electrostatic potential distributions have been obtained. The calculated results show that the electrostatic potentials of C68 (6140) inside the sphere have three minima in the middle of the double bonds at fusion of two hexagonal rings. In contrast, potential minimum Vmin(r) of C68 (6275) inside the sphere occurs at the center of the sphere. Concerning the two isomers of C68, the largest regions with the most negative MEP outside the sphere are both localized in the neighborhood of pentagon-pentagon vertex fusions. They constitute the most probable active sites in chemical reactions. Our results present a reasonable explanation for the bonding between scandium atoms and fullerene cage.
出处 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 北大核心 2007年第3期321-327,共7页 结构化学(英文)
基金 the Department of Education of Liaoning Province (No. 2024201057)
关键词 C68 fullerene METALLOFULLERENE electrostatic potential BONDING C68 fullerene, metallofullerene, electrostatic potential, bonding
  • 相关文献

参考文献1

二级参考文献12

  • 1Kroto,H.W.Nature 1987,329,529.
  • 2Piskoti,C.; Yarger,J.; Zettl,A.Nature 1998,393,771.
  • 3Prinzbach,H.; Weller,A.; Landenberger,P.; Wahl,F.; Worth,J.; Scott,L.T.; Gelmont,M.; Olevano,D.; von Issendorff,B.Nature 2000,407,60.
  • 4Xie,S.Y.; Gao,F.; Lu,X.; Huang,R.B.; Wang,C.R.; Zhang,X.; Liu,M.L.; Deng,S.L.; Zheng,L.S.Science 2004,304,699.
  • 5Lu,X.; Chen,Z.F.; Thiel,W.; Schleyer,P.V.R.; Huang,R.B.; Zheng,L.S.J.Am.Chem.Soc.2004,126,14871.
  • 6Xu,W.G.; Wang,Y.; Li,Q.S.THEOCHEM.2000,531,119.
  • 7Zhao,X.J.Phys.Chem.B 2005,109,5267.
  • 8Lyuben,Z.; Thomas,H.; Gotthard,S.J.Phys.Chem.A 2004,108,11733.
  • 9Becke,A.D.J.Chem.Phys.1993,98,5648.
  • 10Frisch,M.J.; Trucks,G.W.; Schlegel,H.B.; Scuseria,G.E.; Robb,M.A.; Cheeseman,J.R.; Zakrzewski,V.G.; Montgomery,J.A.; Stratmann,R.E.; Burant,J.C.; Dapprich,S.; Millam,J.M.; Daniels,A.D.; Kudin,K.N.; Strain,M.C.; Farkas,O.; Tomasi,J.; Barone,V.; Cossi,M.; Cammi,R.; Mennucci,B.; Pomelli,C.; Adamo,C.; Clifford,S.; Ochterski,J.; Petersson,G.A.; Ayala,P.Y.; Cui,Q.; Morokuma,K.; Malick,D.K.; Rabuck,A.D.; Raghavachari,K.; Foresman,J.B.; Cioslowski,J.; Ortiz,J.V.; Baboul,A.G.; Stefanov,B.B.; Liu,G.; Liashenko,A.; Piskorz,P.; Komaromi,I.; Gomperts,R.; Martin,R.L.; Fox,D.J.; Keith,T.; Al-Laham,M.A.; Peng,C.Y.; Nanayakkara,A.; Gonzalez,C.; Challacombe,M.; Gill,P.M.W.; Johnson,B.; Chen,W.; Wong,M.W.; Andres,J.L.; Gonzalez,C.; Head-Gordon,M.; Replogle,E.S.; People,J.A.Gaussian 98,Revision A.7,Gaussian,Inc.,Pittsburgh PA 1998.

同被引文献2

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部