期刊文献+

基于共振解调与神经网络的滚动轴承故障智能诊断 被引量:5

Intelligent diagnosis based on demodulated resonance technique and neural network for rolling bearing faults
下载PDF
导出
摘要 介绍了一种基于共振解调与神经网络技术的滚动轴承故障诊断方法。对采集系统所拾取的滚动轴承振动信号进行共振解调处理,依据故障包络频谱中必然存在谐波谱线的规律,在共振解调后的包络信号中提取所需的轴承故障谱线特征信息,并将其作为神经网络输入,利用神经网络进行轴承各种故障状态的识别,实现滚动轴承故障的智能诊断。实验表明,该方法能准确而有效地识别出滚动轴承的不同磨损状态,诊断便捷。 This paper introduced rolling bearing fault diagnosis based on demodulated resonance technique and neural network. After demodulating resonance processing to roLling beating's vibrant signal which was got from the system of data acquisition, the authors can pick up the needing roRing fault information in the envelope signal based the law that the fault envelope spectrum have harmony wave spectrum. Input the fault information to neural network and identify aU kinds of fault state of the roiling bearing through neural network, which can implement the intelligent fault diagnosis of rolling bearings.
出处 《中国测试技术》 2007年第2期13-15,25,共4页 CHINA MEASUREMENT & TESTING TECHNOLOGY
关键词 滚动轴承 共振解调 包络信号 神经网络 智能诊断 Rolling beating Demodulated resonance technique Envelope signal Neural network Fault diagnosis
  • 相关文献

参考文献4

  • 1梅宏斌.滚动轴承振动监测与诊断-理论、方法、系统[M].北京:机械工业出版社,1996..
  • 2韩立群.人工神经网络理论、设计及应用[M].北京:化学工业出版社,2002.34-51.
  • 3David Logan,Joseph Mathew.Using Correlation Dimension for Vibration Fault Diagnosis of Rolling Element Bearing[J].Basic Concept.Mechanical Systems and Signal Processing,1996,10(3):241-250.
  • 4Kamarthi S V,Pittner S.Accelerating Neural Networks Training Using Weight Extrapolations[J].Neural Networks,1999,12:1285-1299.

共引文献29

同被引文献29

引证文献5

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部