摘要
设x:Mm→Sn为Sn中无脐点子流形,K为截曲率的下确界,本文给出截曲率两个拼挤定理。
In this paper, let M^m be a m-dimensional submanifold without umbilic point in unit sphere, we prove two pinching theorems about Moebius sectional curvature, which give the characterizations of Clifford tori,Veronese submanifolds by the Moebius invariants.
出处
《科技信息》
2007年第6期136-137,共2页
Science & Technology Information
关键词
子流形
第二基本形式
截曲率
内蕴性
Moebius submanifold, the Moebius second fundamental form