期刊文献+

齐家古潜山基岩裂缝的神经网络模式识别 被引量:3

ARTIFICIAL NEURAL NETWORK PATTERN RECOGNITION OF FRACTURES IN THE BEDROCK RESERVOIR OF THE QIJIA BURIED HILL
下载PDF
导出
摘要 在岩芯裂缝观测基础上,应用岩芯标定测井,分岩性建立了测井解释模型,分析了裂缝发育段在常规测井曲线上的响应特征,并结合钻井泥浆漏失、放空及开发动态资料,识别出典型裂缝段,将其测井响应作为训练样本集,应用神经网络模式识别技术的并行处理、分布式的信息存储、极强的自学习功能和自动调整权值的能力,对齐家古潜山76口井进行了裂缝段的识别,探索出一套综合岩芯、常规测井、测试与动态等信息进行裂缝分布预测的新方法,经钻探证实,效果良好。 Based on lithologic logging interpretation, the authors identified typical fracture sections according to their logging response calibrated by core data integrating drilling mud leakage, drilling break and production data. Then the typical logging response of fracture section was employed as training samples for Artificial Neural Network Pattern Recognition (NNPR). All the 76 wells in the Qijia buried hill were processed by applying the ability of NNPR including paralleling process, distribution information storage, powerful selfstudy and automatic weight value adjustment. Finally, a new fracture prediction method integrating core, conventional logging, test and production data was formulated, which has been proved to be effective by drilling.
出处 《物探与化探》 CAS CSCD 2007年第2期160-163,共4页 Geophysical and Geochemical Exploration
关键词 齐家古潜山 神经网络模式识别 裂缝 测井解释 Qijia buried hill artificial neural network pattern recognition fracture logging interpretation
  • 相关文献

参考文献4

  • 1Rogers S J.Determination of lithology from well logs using a neural network[J].AAPG,1992,76(5):731.
  • 2Richard P L.An Introduction to computing with neural nets[J].IEEE ASSP Magz,1987,(4):4.
  • 3Derek H.Comparative study of backpropagation neural network and statistical pattern recognition techniques in Identifying sandstone lithofacies[R].Texas A&M University,College Station,1990.
  • 4罗利.神经网络在测井解释中的应用[J].天然气工业,1997,17(5):23-26. 被引量:14

共引文献13

同被引文献34

引证文献3

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部