摘要
研究了平均样本间隔E(Xk+1:n-Xk:n)的性质.证明了当X具有DRHR年龄性质时,E(Xk+1:n-Xk:n)关于样本容量n递减.而当X具有IFR年龄性质时,E(Xk+1:n-Xk:n)-E(Xk+2:n+1-Xk+1:n+1)非负.最后,讨论了主要结果在拍卖模型中的应用.
The properties of mean sample spacings are studied. It is shown that that the mean sample spacings E(Xi+1,n-Xi,n) is nonincreasing in the sample size if distribution is DRHR and E(Xi+1,n-Xi,n)- E(Xi+2,n+1 - Xi+1,n+1) is nonnegative if distribution is IFR. Some application in auction model are present as well.
出处
《数学的实践与认识》
CSCD
北大核心
2007年第5期60-64,共5页
Mathematics in Practice and Theory
基金
陕西省教育厅科研基金(06JK325)