期刊文献+

定数截尾两参数指数——威布尔分布形状参数的Bayes估计 被引量:20

The Bayesian Estimation of Shape-Parameter of Two-Parameter Exponentiaed-Weibull Distribution Under the Type-Ⅱ Censoring Test
原文传递
导出
摘要 在不同的损失函数下,本文研究了两参数指数—威布尔分布(EWD)形状参数的Bayes估计问题.基于定数截尾试验,当其中一个形状参数α已知时,给出了另一个形状参数θ在三种不同损失函数下的Bayes估计表达式,并求得了可靠度函数的Bayes点估计.最后运用随机模拟方法,将Bayes估计和极大似然估计进行了比较.结果表明,LINEX损失下Bayes估计的精度比极大似然估计高. In this paper we study the Bayes estimations of shape-parameter of two-parameter EWD under several different loss functions. Based on type-Ⅱ censoring test, when one shapeparameter is fixed, the Bayesian estimations of another shape-parameter under several loss functions, are given. Also we offer the reliability function an expression of Bayes point estimation. Then we compare the Bayes estimations with the MLE by means of Monte Carlo simulation. The results show that the accuracy of the Bayes estimation under LINEX loss is better than that of the MLE.
出处 《数学的实践与认识》 CSCD 北大核心 2007年第5期65-70,共6页 Mathematics in Practice and Theory
基金 国家自然科学基金资助项目(70471057) 陕西省教育厅自然科学基金资助项目(03JK065)
关键词 两参效指效-威布尔分布 定效截尾试验 损失函效 BAYES估计 极大似然估计 two-parameter EWD type-Ⅱ censoring test loss function bayes estimation MLE
  • 相关文献

参考文献5

  • 1Mudholkar G S, Srivastava D K, Friemer M. The exponentiated weibull family: A reanalysis of the bus motorfailure data[J]. Technometrics, 1995,37(4) :436-445.
  • 2Mudholkar G S, Srivastava D K. Exponentiated Weibull family for analyzing bathtub failure-rate data[J]. IEEE Trans. Reliability, 1993,42 : 299-302.
  • 3Amit Choudhury. A simple derivation of moments of the exponentiated weibull distribution[J]. Metrika.2005,62:17-22.
  • 4王德辉,宋立新.熵损失函数下定时截尾情形参数的Bayes估计[J].东北师大学报(自然科学版),1999,31(2):103-107. 被引量:19
  • 5Singh U, Gupta P K, Upadhyay S K. Estimation of parameters for exponentiated-Weibull family under type-Ⅰ censoring scheme[J]. Comuputational Statistics & Data Analysis,2005,48:509-523.

二级参考文献3

  • 1陈家鼎,生存分析与可靠性引论,1993年,68-69,110-112页
  • 2张尧庭,贝叶斯统计推断,1991年,56页
  • 3刘玉琏,数学分析.下,1991年,40页

共引文献18

同被引文献84

引证文献20

二级引证文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部