期刊文献+

热熔合反应合成超重核产生截面的同位素依赖性 被引量:1

Isotopic Dependence of Production Cross Sections of Superheavy Nuclei in Hot Fusion Reactions
原文传递
导出
摘要 通过在形成超重核的重离子俘获和熔合过程中引入位垒分布函数的方法对双核模型做了进一步发展.超重核形成过程中的俘获、熔合和蒸发3个阶段分别采用了半经验的耦合道模型、数值求解主方程和统计蒸发模型的方法来描述.计算了近年来Dubna小组利用热熔合反应48Ca(243Am,3n-5n) 288-286115和48Ca(248Cm,3n-5n)293-291116合成超重新核素的蒸发余核激发函数.系统分析了48Ca轰击锕系元素U,Np,Pu,Am,Cm合成超重核Z=112-116产生截面的同位素依赖性.给出了合成超重新核素最佳的弹靶组合和入射能量,即有最大的超重核产生截面.计算说明,壳修正能和中子分离能是影响超重核生成截面产生同位素依赖性的主要因素. The dinuclear system model has been further developed by introducing the barrier distribution function method in the process of heavy-ion capture and fusion to synthesize superheavy nuclei. The capture of two colliding nuclei, formation and de-excitation process of compound nucleus are decribed by using empirical coupled channel model, solving master equation numerically and statistical evaporation model, respectively. Within the framework of the dinuclear system model, the fusion-evaporation excitation functions of the systems ^48Ca (^243Am, 3n-5n) ^288-^286 115 and ^48Ca(^24SCm, 3n-5n)^293-^291 116 are calculated, which are used for synthesizing new superheavy nuclei at Dubna in recent years. Isotopic dependence of production cross sections with double magic nucleus 4SCa bombarding actinide targets U, Np, Pu, Am, Cm to synthesize superheavy nuclei with charged numbers Z=112--116 is analyzed systematically. Based on these analysis, the optimal projectile-target combination and the optimal excitation energy are proposed. It is shown that shell correction energy and neutron separation energy will play an important role on the isotopic dependence of production cross sections of superheavy nuclei.
出处 《高能物理与核物理》 CSCD 北大核心 2007年第4期366-370,共5页 High Energy Physics and Nuclear Physics
基金 国家自然科学基金(10475100 10505016)资助~~
关键词 超重核 双核模型 产生截面 同位素依赖性 superheavy nuclei, dinuclear system model, production cross sections, isotope dependence
  • 相关文献

参考文献21

  • 1Hofmann S,Müzenberg G.Rev.Mod.Phys.,2000,72:733.
  • 2Hofmann S,Heβberger F P,Ackermann D et al.Eur.Phys.J.,2002,A14:147.
  • 3Oganessian Yu Ts,Utyonkoy V K,Lobanov Yu V et al.Phys.Rev.,2004,C69:R021601.
  • 4Oganessian Yu Ts,Utyonkoy V K,Lobanov Yu V et al.Phys.Rev.Lett.,1999,83:3154.
  • 5Oganessian Yu Ts,Yeremin A V,Popeko A G et al.Nature,1999,400:242.
  • 6Morita K,Morimoto K,Kaji D et al.J.Phys.Soc.Jpn,2004,73:2593.
  • 7甘再国,范红梅,秦芝,吴晓蕾,郭俊盛,雷相国,董成富,徐华根,陈若富,张福明,郭斌,刘洪业,王华磊,谢成营,冯兆庆,郑勇,宋立涛,骆鹏,徐瑚珊,周小红,靳根明,任中洲.^(265)Bh(Z=107)同位素的首次观测[J].高能物理与核物理,2004,28(4):332-334. 被引量:14
  • 8GAN Z G,GUO J S,WU X L et al.Eur.Phys.J.,2004,A20:385.
  • 9Bjornholm S,Swiatecki W J.Nucl.Phys.,1982,A391:471.
  • 10Aritomo Y,Wada T,Ohta M.Phys.Rev.,1999,C59:796.

二级参考文献11

  • 1Wilk P A,Gregorich K E,Tüler A et al.Phys.Rev.Lett.,2000,85:2697
  • 2Wapstra A H,Audi G.Nucl.Phys.,1985,A432:55
  • 3Moller P,Nix J R,Kratz K L.Atom.Data Nucl.Data Tables,1995,66:315
  • 4Gregorich K E,Lane M R,Mahar M F,Lee D M et al.Phys.Rev.Lett.,1994,72:1423
  • 5WU Xiao-Lei,GAN Zai-Guo,GUO Jun-Sheng et al.Nuclear Techniques,in press(in Chinese)(吴晓蕾,甘再国,郭俊盛等.核技术,(待发表))
  • 6Gregorich K E.Nucl.Instrum.Methods Phys.Res.,1991,A302:135
  • 7Firestone R B,Shirley V S,Baglin C M et al.Table of Isotopes(eighth edition)LBL,New York:1996
  • 8REN Zhong-Zhou,CHEN Ding-Han,TAI Fei et al.Phys.Rev.,2003,C67:064302
  • 9Hoffmann S,Heβberger F P,Ackermann D A et al.Eur.Phys.J.,2002,A14:147
  • 10Münzenberg G,Hofmann S,Heβberger F P et al.Z.Phys.,1981,A300:107

共引文献13

同被引文献1

  • 1甘再国,郭俊盛,吴晓蕾,范红梅,秦芝,雷祥国,董成富,徐华根,陈若富,张福明,郭斌,刘洪业,王华磊,谢成营,冯兆庆,郑勇,宋立涛,骆鹏,徐瑚珊,周小红,靳根明,任中洲.新同位素^(265)Bh(Z=107)的合成证据[J].原子核物理评论,2005,22(1):36-38. 被引量:1

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部