期刊文献+

自然风对高速磁浮列车气动特性的影响 被引量:13

Effects of Natural Wind on Aerodynamic Characteristics of High-Speed Maglev Train
下载PDF
导出
摘要 基于可压缩黏性流体的N—S方程和k—ε两方程湍流模型,采用有限容积法对磁浮列车受自然风作用下的气动力特性进行计算分析,结果表明:自然风导致列车表面的压力分布发生变化,除了列车头、尾部压力峰值点发生偏移外,列车迎风侧面的压力随着自然风速的增加而增大,随着自然风与列车之间夹角的增大呈现先增大后减小的变化规律;列车受到气动升力、侧向力以及侧滚力矩、俯仰力矩和偏转力矩的作用也随着自然风与列车之间夹角的增大呈先增大后减小的变化规律,且在自然风向与列车运行方向垂直时达到最大,此时列车受到的气动力及力矩作用均随自然风速的增大而单调增加。 Based on the Navier-Stokes equation of the compressible viscous fluid and the two-equation turbulent model, aerodynamic characteristics of maglev trains under windy conditions are investigated using the finite volume method. Calculation results show that the pressure distribution of the train surface changes because of the wind. It is obvious that the place of peak value of pressure is moved. The pressure on the windward surface not only increases with the accretion of the wind speed, but also begins to decrease after reaching the peak with the increasing of the angle between wind and vehicle. As for the forces and moments acting on the train, they also begin to decrease after reaching the maximum with the accretion of the angle between wind and vehicle. When the direction of the wind is vertical to that of the train, the lift, side force, rolling moment, pitching moment and yawing moment reach peak and these forces and moments will monotonously increase with the accretion of wind speed.
出处 《中国铁道科学》 EI CAS CSCD 北大核心 2007年第2期65-70,共6页 China Railway Science
基金 国家自然科学基金资助项目(50375127) 国家自然科学基金资助项目(50605053) 国家自然科学杰出青年基金资助项目(50525518) 国家自然科学创新研究群体科学基金资助项目(50521503) 高等学校科技创新工程重大项目培养基金资助项目(705044)
关键词 气动力特性 磁浮列车 自然风 数值计算 Aerodynamic characteristics Maglev train Natural wind Numerical calculation
  • 相关文献

参考文献11

  • 1Wyczalek F A.Maglev Transit Technology in Russia[C] //Proceeding of Maglev'93,13th International Conference on Magnetically-Levitated Systems and Linear Drives.France:Argonne National Lab,1993:88-93.
  • 2Chen S S,Rote D M,Coffey H T.Review of Vehicle/Guideway Interactions in Maglev Systems,in Fluid Structure Interaction,Transient Thermal-Hydraulics,and Structural Mechanics[J].ASME New York,1992,231 (3):81-95.
  • 3Coffey H T.Status and Review of the U.S.Maglev Program[C] //Proceedings of International Conference on Speed-up Technology for Railway and Maglev Vehicle.Japan:Yohohama,1993:123-129.
  • 4毕海权,雷波,张卫华.TR磁浮列车湍流外流场数值计算[J].西南交通大学学报,2005,40(1):5-8. 被引量:15
  • 5Tyll J S,Liu D,Schets J A,et al.Experiment Studies of Magnatic Levitation Train Aerodynamics[J].AIAA Journal,1996,34 (12):2465-2470.
  • 6Miyakawa J,Hosaka S.Aerodynamic Design of Frontal Shape for JR Maglev Train[C] //Proceeding of International Conference on Speedup Technology.Japan:Yokohama,1993:316-319.
  • 7吉田康夫,飯田亚宣.浮上式铁道率両まわりの流れの数值シミユレ-シヨン[J].鉄道総研报告,1994,8(9):37-42.
  • 8吉田康夫,齐藤实俊.山梨実驗線牵両まわりの流れの解析[J].铁道総研报告,2000,14(9):43-48.
  • 9李人宪,刘应清,翟婉明.高速磁悬浮列车纵向及垂向气动力数值分析[J].中国铁道科学,2004,25(1):8-12. 被引量:26
  • 10刘堂红,田红旗,鲁寨军.列车交会压力波对高速磁浮列车横向动态响应的影响分析[J].中国铁道科学,2004,25(6):9-14. 被引量:15

二级参考文献34

  • 1王勖成 邵敏.有限单元法基本原理和数值方法[M].北京:清华大学出版社,1998..
  • 2[1]Alscher H, iguchi M, Eastham A R Boldea. Non-contact Suspension and Propulsion Technology [J]. Vehicle System Dynamics, 1983, 12(3): 259-289.
  • 3[2]Coffey HT, Chilton F, Hoppie LO. Magnetic Levitation of High-speed Ground Vehicles [C]. Proceedings of Applied Superconductive Conference, IEEE, New York, 1972: 62-75.
  • 4[3]Wyczalek FA. Maglev Transit Technology in Russia [C]. Proceedings of Maglev ′93, 13th International Conference on Magnetically-levitated Systems and Linear Drives, Argonne National Lab., Argonne IL, 1993: 88-93.
  • 5[4]Kolm HH, Thornton RD. Electromagnetic Flight [J]. Science of America, 1973, 229(4): 17-25.
  • 6[5]Coffey HT. Status and Review of the U.S. Maglev Program [C]. Proceedings of International Conference on Speedup Technology for Railway and Maglev Vehicles. Yokohama, Japan, 1993,123-129.
  • 7[6]Rhodes RG. Maglev Research in the UK [C]. Proceedings of Second International Seminar on Superconductive Magnetic Levitated Trains. T Ohtsuka and Mlguchi (eds). Miyazaki, Japan, 1982: 31-37.
  • 8[7]Rhodes RG, Mulhall BE. Magnetic Levitation for Rail Transport [M], New York, Clarendon Press Oxford, 1981.
  • 9[8]Chen SS, Rote DM, Coffey HT. Review of Vehicle/Guideway Interactions in Maglev Systems, in Fluid-Structure Interaction, Transient Thermal-Hydraulics, and Structural Mechanics[J]. ASME, New York, 1992, 231(3): 81-95.
  • 10[9]Bohn G, Steinmetz G. Electromagnetic Suspension System of the Magnetic Train Tansrapid [C]. Proceedings of International Conference on Maglev Transport ′85. Keidanren Kaikan, Tokyo, Japan, 1985: 107-114.

共引文献60

同被引文献148

引证文献13

二级引证文献123

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部