期刊文献+

压电生物传感器响应机制的声阻抗模型理论分析 被引量:3

Theoretical Analysis of Response Mechanisms of Piezoelectric Biosensors Based on Acoustic Impedance Model
下载PDF
导出
摘要 基于声阻抗概念,建立起压电传感器响应机制的声阻抗模型,并引入与传感器负载剪切模量相关的声学校正因子,以表明传感器响应中的非质量效应.由此模型在一定近似条件下,对黏性液体,气/液相刚性和黏弹性薄膜等不同负载,分别导出相应的传感器响应方程,阐明了各种传感器响应机制的物理意义.另外在实际应用中可能存在摩擦,非均匀性和界面现象等干扰,但利用该声阻抗模型可望获取新信息、开拓新的应用. An acoustic impedance model has been developed for analysis of response mechanisms of piezoelectric biosensors. The non-gravimetric effect in sensor's responses was defined by a parameter named acoustic correction factor relating to the mechanic property (shear modulus) of the sensor loading. Under some approximate conditions, response equations of piezoelectric biosensors were consequently derived for various loadings involving viscous liquid, rigid and viscoelastic films in gas and liquid phases. It was shown that the acoustic impedance of a sensor is pivotal to its biosensing. And through the universal model, various response mechanisms for piezoelectric biosensors could be physically clarified. Additionally, there would be some interference from factors such as friction, heterogeneity and interfacial phenomena in practical applications. However, new information would be provided by interpreting interferences with this model, and then new fields of application would be explored for piezoelectric biosensors.
出处 《传感技术学报》 CAS CSCD 北大核心 2007年第4期738-742,共5页 Chinese Journal of Sensors and Actuators
关键词 压电生物传感器 响应机制 声阻抗 物理模型 piezoelectric biosensors response mechanism acoustic impedance physical model
  • 相关文献

参考文献13

  • 1Sauerbrey G, Verwendung von Schwingquarzen zur Wagung dunner Schichten und zur Mikrowagung [J], Z Phys, 1959,155: 206-212.
  • 2Janshoff A, Galla H J, Steinem C. Piezoelectric Mass-Sensing Devices As Biosensors: an Alternative to Optical Biosensors[J], Angew Chem Int Ed, 2000, 39: 4004-4032.
  • 3姚守拙.非质量效应压电化学传感的应用与发展[J].化学通报,2001,64(9):533-536. 被引量:7
  • 4Marx K A. Quartz Crystal Microbalance: a Useful Tool for Studying Thin Polymer Films and Complex Biomolecular Systems at the Solution-Surface Interface [J], Biomacromolecules, 2003, 4: 1099-1120.
  • 5张福学.现代压电学(上册)[M].北京:科学出版社,2003.
  • 6Nowomy H, Benes E. General One-Dimensional Treatment of the Layered Piezoelectric Resonator with Two Electrodes [J],J Acoust Soc Am, 1987, 82,, 513-521.
  • 7Krimholtz R, Leedom D A, Matthaei G L, New Equivalent Circuits for Elementary Piezoelectric Transducers [J], Electron Lett, 1970, 6: 398-399.
  • 8Rosenbaum J F, Bulk Acoustic Wave Theory and Devices[M],Boston, MA: Artech House Publishers,1988.
  • 9Reed C E, Kanazawa K K, Kaufman J H, Physical Description of Viscoelastically Loaded AT-Cut Quartzresonator [J], J Appl Phys, 1990, 68: 1993-2001.
  • 10Lucklum R, Behling C, Hauptmann P. Role of Mass Accumulation Anid Viscoelastic Film Properties for the Response of Acoustic-Wave-Based Chemical Sensors [J], Anal Chem,1999, 71: 2488-2496.

二级参考文献1

共引文献7

同被引文献26

  • 1余元龙,季明芳,何洁冰,李晓玲.紫杉醇对肝癌细胞增殖抑制和诱导凋亡的效应研究[J].中华实验外科杂志,2004,21(7):877-878. 被引量:6
  • 2韦晓兰,莫志宏,高小丽.细胞黏附压电传感响应机制分析[J].生物物理学报,2006,22(3):225-231. 被引量:2
  • 3莫志宏,黄红稷,钱俊臻,朱丽华.IgG免疫纳米探针凝聚反应压电传感检测[J].高等学校化学学报,2007,28(4):649-651. 被引量:4
  • 4Ferreira G N M, da-Silva A C, Tome B. Trends Biotechnol. , 2009, 27(12):689-697.
  • 5Ding Y J, Liu J, Wang H, Shen G L, Yu R Q. Biomaterials, 2007, 28(12): 2147-2154.
  • 6Cheng C W, Chen C K, Chen Y S, Chen L Y. Biosens. Bioelectron. , 2008, 24(1) : 136-140.
  • 7March C, Manclus J J, Jimenez Y, Arnau A, Montoya A. Talanta, 2009, 78(3): 827-833.
  • 8Ghourchian HO, Kamo N, Hosokawa T, Akitaya T. Talanta, 1994, 41(3) : 401-406.
  • 9Aizawa H, Tozuka M, Park J W, Noda K, Kobayashi K, Reddy S M, Kurosawa S. Biosens. Bioelectron. , 2003, 18(5-6):765-771.
  • 10Willner I, Patolsky F, Weizmann Y, Willner B. Talanta, 2002, 56(5): 847-856.

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部