期刊文献+

一种分块表示的彩色目标跟踪算法 被引量:2

下载PDF
导出
摘要 一种基于分块加权彩色直方图特征的目标表示方法。将图像分为部分叠加的块,分别对每块计算加权量化彩色直方图,构成直方图组。将直方图组用于基于mean shift的彩色目标跟踪系统,利用Kalman滤波估计目标状态。
出处 《电子技术应用》 北大核心 2007年第3期57-59,共3页 Application of Electronic Technique
  • 相关文献

参考文献9

  • 1POLAT E,YEASIN M,SHARMA R.A 2D/3D model-based object tracking ramework[J].Pattem Recognition, 2003,36 :2127-2141.
  • 2CORMICK J M, BLAKE A.A probabilistic exclusion principle for tracking multiple objects.in: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Corfu, Greece, 1999.
  • 3RASMUSSEN C, HAGER G D.Probabilistic data association methods for tracking complex visualobjects. IEEE Trans. Pattern Anal. Mach. Intell, 2001 ;23(6) : 560-576.
  • 4HARITAOGLU I, HARWOOD D, DAVIS L.W4 : real-time surveillance of people andtheir activities.IEEE Trans.Pattern Anal. Mach. Intell, 2000,22 (8) 809 - 830.
  • 5朱志刚 林学阎译.数字图像处理[M].北京:电子工业出版社,2002..
  • 6Katja Nummiaro,Esther Koller-Meier,Luc Van Gool.利用颜色的非刚性物体跟踪方法(英文)[J].自动化学报,2003,29(3):345-355. 被引量:15
  • 7COMANECI D,RAMESH V,MEER P.Kernel-based object tracking[J].Transactions on Pattern Analysis and Machine Intelligence, 2003,25 (5)
  • 8WELCH G, BISHOP G.An Introduction to the kalman filter[M].UNC-Chapel Hill,TR 95-041 ,April 5,2004.
  • 9GREWAL M S,ANDREWS A P.Kalman filtering:theory and practice using matlab[M], Second Edition, 2001.

二级参考文献23

  • 1Beymer D, McLauchlan P. Coifman B, Malik J. A real-time computer vision system for measuring traffic parameters.Computer Vision and Pattern Recognition, 1997. 495-501.
  • 2Greiffenhagen M, Ramesh V, Comaniciu D, Niemann H. Statistical modeling and performance characterization of a real-time dual camera surveillance system. Computer Vision and Pattern Recognition ,2000. 335-342.
  • 3Segen J , Pingali S. A camera-based system for tracking people in real time. In:International Conference on Pattern Recognition, 1996. 63-67.
  • 4Gordon N, Salmond D. Bayesian state estimation for tracking and guidance using the bootstrap filter. Journal of Guidance. Control and Dynamics, 1995,18(6): 1434-1443.
  • 5Isard M, Blake A. Contour tracking by stochastic propagation of conditional density. European Conference on Computer Vision, 1996. 343-356.
  • 6Isard M, Blake A. CONDENSATION--Conditional density propagation for visual tracking. International Journal Computer Vision ,1998,1(29) :5-28.
  • 7Kitagawa G. Monte Carlo filter and smoother for non-Gaussian nonlinear state space models. Journal of Computational and Graphical Statistics, 1996,5 ( 1 ) : 1 - 25.
  • 8Koller D, Weber J, Malik J. Robust multiple car tracking with occlusion reasoning. In:European Conference on Computer Vision, 1994. 189- 196.
  • 9Comaniciu D, Ramesh V, Meer P. Real-time tracking of non-rigid objects using mean shift. Computer Vision and Pattern Recoenition, 2000. 142-149.
  • 10Jepson A, Fleet D, El-Maraghi T. Robust online appearance models for visual tracking. Computer Vision and Pattern Recognition ,2001. 415-422.

共引文献34

同被引文献10

引证文献2

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部