期刊文献+

GF(2^m)域椭圆曲线密码体制中改进的省时算法

Better Fast Algorithm for Elliptic Curve Cryptography in GF (2^m) Field
下载PDF
导出
摘要 为了提高椭圆曲线加解密速度,需要对模逆运算算法进行改进或省出求模逆运算来节省时间。以GF(2m)中三类代表性射影坐标变换中c=1,d=2时的射影坐标变换为GF(2m)域中椭圆密码体制最为省时的事实,通过c=1,d=2时的射影坐标和仿射坐标混合坐标点加进行运算,结果会比x=X/Z,y=Y/Z2射影坐标变换更为省时。 In order to speed up encryption and decryption in Elliptic curve cryptography, Module inverse algorithm is improved or committed to save time. In this paper, according to the fact that it is the fastest projective coordinate transformation when c=1, d=2 among three representative projective coordinate transformations, through mixed coordinate additions of affine coordinate and projective coordinate, we conclude that it is faster than the condition of projective coordinate transformations.
作者 李金 陈一宏
出处 《北京石油化工学院学报》 2007年第1期5-7,共3页 Journal of Beijing Institute of Petrochemical Technology
关键词 椭圆曲线密码体制 仿射和射影混合坐标点加 GF(2^M)域 elliptic curve cryptography GF (2^m) field mixed coordinate additions of affine coor dinate and projective coordinates
  • 相关文献

参考文献2

二级参考文献2

共引文献62

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部