期刊文献+

一类带有漏隙的疫苗的年龄结构SIR流行病模型

An age-structured SIR epidemic model with leaky vaccination
下载PDF
导出
摘要 在考虑接种疫苗的对象(含新生儿)和疫苗效能问题的基础上,建立了一类带有漏隙的疫苗的年龄结构SIR流行病模型,得到了无病平衡点和地方病平衡点存在的条件及无病平衡点局部稳定性的条件. An age-structured SIR epidemic model with leaky vaccination is modeled in this paper, basing on analysis to vaccination subject(including newborns) and vaccination strategy with the vaccine efficacy, we derive the conditions ot the existence of the disease-free equilibrium and endemic equilibrium, as well as that of the locally asymptotical stability of the disease-free equilibrium.
出处 《商丘师范学院学报》 CAS 2007年第3期30-34,共5页 Journal of Shangqiu Normal University
基金 河南省自然科学基金(0312002000)资助项目
关键词 年龄结构SIR流行病模型 种痘 平衡点 稳定性 age-structured SIR epidemic model vaccination equilibrium stability
  • 相关文献

参考文献9

  • 1Hethcote H W.The mathmetics of infectious disease[J].SIAM Rev.,2000,42:599-653.
  • 2Hethcote H W,Oscillations in an endemic model for pertussis[J].Canadian Appl.Math.Quart,1998,6:61-88.
  • 3Kribs-Zaleta C and Martcheva M.Vaccination strategies and backward bifurcationin an age-since-infection structured model[J].Math.Biosci,2002,177/178:317-332.
  • 4Kribs-Zaleta C and velasco-Hernandfz J.A simple vaccination model with multiple endemic states[J].Math.Biosci.,2000,164:183-201.
  • 5Arino J,Mccluskey C C and Driessche P V D.Global results for an epidemic model with vaccination that exhibits backward bifurcation[J].SIAM J.Appl.Math.,2003,64:260-276.
  • 6郭淑利,姚峰.一类带有种痘的齐次SIR传染病模型分析[J].信阳师范学院学报(自然科学版),2005,18(4):376-380. 被引量:3
  • 7Feller W.On the integral equation of renewal theory[J].Ann.Math.Stat,1941,12:243-267.
  • 8Iannelli M.Mathematical Theory of Age-Structured Population Dynamics[M].Applied Mathematics Monographs.Comitato Nazionale per le Science Matematiche,Consiglio Nazionale delle Ricerche (C.N.R.)},Giardini Editori,Pisa.1995,7.
  • 9Busenberg S,Cooke K and Iannelli.Endemic thresholds and stability in a class of age-structured epidemics[J].SIAM J.Appl.Math.,1988,48:1379-1395.

二级参考文献14

  • 1LI MICHAEL Y,SMITH HAL L,WANG Liancheng.Global dynamics of an SEIR epidemic model with vertical transmission[J].SIAM APPL Math,2001,62(1):58-69.
  • 2CHA Youngjoon, IANNELLI M,MILNER F A.Stability of change of an epidemic model [J].Dynamic System Appl,2000, 9:361-376.
  • 3FENG Z,IANNELLI M,MILNER F A.A two-strain tuberculosis model with age of infection [J].SIAM Math,2002, 62(5): 1634-1656.
  • 4MARTCHEVA Maia, CASTILLO-CHAVEZ Carlos.Disease with chronic stage in a population with varing size[J].Math Biosciences,2003, 182: 1-25.
  • 5HADELER K.Pair formation with maturation period [J]. Math Biol,1993,32: 1-15.
  • 6HADELER K.Periodic solutions of homogeneuous equations[J].Diff Eq,1992, 95: 183-202.
  • 7HADELER K,WALDSTTTER R, WRZ-BUSEKROS A.Models for pair formation in bisexual populations[J].Math Biol,1988, 26: 635-649.
  • 8FREDRICHSON A.A mathematical theory of age structure in sexual population:random mating and monogamous marriage models [J].Math Biosci,1971, 10: 117-143.
  • 9HOPPENSTEADT F.Mathematical theories of populations: demographics, genetics and epidemics society for industrial and applied mathematics[M]. Philadelphia,1975.
  • 10IANNELLI M,MARTCHEVA M.A semigroup approch to the wellposedness of the two-sex population model [J]. Dynam Sys Appl,1997, 5: 353-370.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部