期刊文献+

FC-空间上子集生成的FC-子空间的性质及KKM型定理 被引量:4

Properties of FC-subspace generated by a subset and KKM type theorem on FC-spaces
下载PDF
导出
摘要 给出FC-空间和FC-子空间以及KKM映射的定义,引入由子集生成的FC-子空间的概念并讨论其性质,最后得出FC-空间上闭[开]形式的KKM型定理. The definitions of FC-space, FC-subspace and KKM mapping are given, the concept of FC- subspace generated by a subset in FC-spaces is introduced, and its properties are also discussed. Finally the closed[ resp, open] version of KKM type theorem on FC-space.s is obtained.
作者 朴勇杰
出处 《延边大学学报(自然科学版)》 CAS 2007年第1期1-3,25,共4页 Journal of Yanbian University(Natural Science Edition)
基金 国家自然科学基金资助项目(10361005)
关键词 FC-空间 FC-子空间 由子集生成的FC-子空间 KKM映射 FC-space FC-subspace FC-subspace generated by a subset KKM map
  • 相关文献

参考文献5

二级参考文献12

  • 1丁协平.COINCIDENCE THEOREMS INVOKING COMPOSITES OF ACYCLIC MAPPINGS AND APPLICATIONS[J].Acta Mathematica Scientia,1999,19(1):53-61. 被引量:2
  • 2Ding X P.New H-KKM theorems and their applications to geometric property,coincidence theorems,minimax inequality and maximal elements[J].Indian J Pure Appl Math,1995,26(1):1~19.
  • 3Wu X, Shen S.A futher generalization of Yannelis-Prabhakar's continuous selection theorem and their applications[J].J Math Anal Appl,1996,197:61~74.
  • 4Ding X P.Coincidence theorems in topological spaces and their applications[J].Appl Math Lett,1999,12:99~105.
  • 5Ding X P, Zheng L.KKM type theorems and coincidence theorems in topological spaces[J].Indian J Prue Appl Math(submitted).
  • 6Noor M A, Oettli W.On general nonlinear complementarity problems and quasi-equilibria[J].Le Mahatiche,1994,49(2):313~331.
  • 7Lin L J, Park S.On some generalized quasi-equilibrium problems[J].J Math Anal Appl,1998,224(2):167~281.
  • 8Ding X P.Maximal element principles on generalized convex spaces and their applications[J].SIMAA,2002,4:149~174.
  • 9Tan K K, Zhang X L.Fixed point theorems on G-convex space and applications[J].Pro Nonlinear Funct Anal Appl,1996,1:1~19.
  • 10丁协平.拟平衡问题解的存在性(英文)[J].四川师范大学学报(自然科学版),1998,21(6):603-608. 被引量:3

共引文献32

同被引文献24

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部