期刊文献+

有关Kanai-Tajimi模型的统计特征分析 被引量:4

Statistical properties analysis of Kanai-Tajimi model
下载PDF
导出
摘要 选择金井清过滤白噪声模型,采用留数定理推导出K-T谱激励的自相关函数表达式,并在此基础上利用相关函数法分析出K-T谱激励下的平稳反应,并采用功率谱方法加以验证。这些结果可为结构随机地震反应时域分析和抗震可靠性评估提供基础。 In this paper, Kanai-Tajimi filtered Gaussian white noise model is researched for representing the actual earthquake ground acceleration. The residue theorem is used to derive the autocorrelation function expression of Kanai-Tajimi spectrum excitation. Then the stationary response under K-T spectrum excitation is obtained using the correlation function method and confirmed by the power spectrum method. These results provide tt basis for the random response analysis and reliability assessment of the earthquake resistant capacity of structures in time domain.
作者 张菊辉
出处 《世界地震工程》 CSCD 北大核心 2007年第1期156-160,共5页 World Earthquake Engineering
关键词 金井清模型 功率谱密度函数 自相关函数 平稳反应 Kanai-Tajimi model power spectrum density function autocorrelation function stationary response
  • 相关文献

参考文献4

  • 1Kanai K.Semi-empirical formula for the seismic characteristics of the ground[J].Bulletin of the Earthquake Research Institute,University of Tokyo,35,Part 2,June 1957.
  • 2Tajimi H.A statistical method of determining the maximum response of a building structure during an earthquake[A].Proc,Second World Conf.on Earthq.Eng[C].Tokyo,Japan,Vol.11,July 1960.
  • 3Housner G W and Jennings P C.Generation of artificial earthquakes[J].Jour.Eng.Mech.Div.,ASCE,1964,90(EMI):113-150.
  • 4王君杰.桥梁概率动力学讲义[R].上海:同济大学,2004.

同被引文献39

  • 1苏成,黄志坚,刘小璐.高层建筑地震作用计算的时域显式随机模拟法[J].建筑结构学报,2015,36(1):13-22. 被引量:32
  • 2白国良,朱丽华.基于现行抗震规范的Kanai-Tajimi模型参数研究[J].世界地震工程,2004,20(3):114-118. 被引量:27
  • 3林均岐,王云剑.调谐质量阻尼器的优化分析[J].地震工程与工程振动,1996,16(1):116-121. 被引量:16
  • 4梁超锋,欧进萍.结构阻尼与材料阻尼的关系[J].地震工程与工程振动,2006,26(1):49-55. 被引量:39
  • 5Roghaei M, Zabihollah A. An efficient and reliable structural health monitoring system for buildings after earthquake[J]. APCBEEProcedia, 2014, 9: 309-316.
  • 6Bagley R L, Torvik P J. A theoretical basis for the application of fractional calculus to vis- coelasticity[J]. Journal of Rheology, 1983, 27(3) : 201-210.
  • 7Bagley R L, Torvik P J. Fractional calculus a different approach to the analysis of viscoelasti- cally damped structures[J]. A/AA Journal, 1983, 21(5) : 741-748.
  • 8Adhikari S. Damping models for structural vibration[ D ]. PhD Thesis. Cambridge: University of Cambridge, 2000: 75-78.
  • 9Huang Z L, Jin X L. Response and stability of a SDOF strongly nonlinear stochastic system with light damping modeled by a fractional derivative [ J ]. Journal of Sound and Vibration, 2009, 319(3/5) : 1121-1135.
  • 10Liu D, Xu W, Xu Y.Dynamic responses of axially moving viscoelastic beam under a randomly disordered periodic excitation[ J]. Journal of Sound and Vibration, 2012, 331 ( 17 ): 4045- 4056.

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部