期刊文献+

Adaptive foreground and shadow segmentation using hidden conditional random fields 被引量:1

Adaptive foreground and shadow segmentation using hidden conditional random fields
下载PDF
导出
摘要 Video object segmentation is important for video surveillance, object tracking, video object recognition and video editing. An adaptive video segmentation algorithm based on hidden conditional random fields (HCRFs) is proposed, which models spatio-temporal constraints of video sequence. In order to improve the segmentation quality, the weights of spatio-temporal con- straints are adaptively updated by on-line learning for HCRFs. Shadows are the factors affecting segmentation quality. To separate foreground objects from the shadows they cast, linear transform for Gaussian distribution of the background is adopted to model the shadow. The experimental results demonstrated that the error ratio of our algorithm is reduced by 23% and 19% respectively, compared with the Gaussian mixture model (GMM) and spatio-temporal Markov random fields (MRFs). Video object segmentation is important for video surveillance, object tracking, video object recognition and video editing. An adaptive video segmentation algorithm based on hidden conditional random fields (HCRFs) is proposed, which models spatio-temporal constraints of video sequence. In order to improve the segmentation quality, the weights of spatio-temporal constraints are adaptively updated by on-line learning for HCRFs. Shadows are the factors affecting segmentation quality. To separate foreground objects from the shadows they cast, linear transform for Gaussian distribution of the background is adopted to model the shadow. The experimental results demonstrated that the error ratio of our algorithm is reduced by 23% and 19% respectively, compared with the Gaussian mixture model (GMM) and spatio-temporal Markov random fields (MRFs).
出处 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2007年第4期586-592,共7页 浙江大学学报(英文版)A辑(应用物理与工程)
基金 Project supported by the National Natural Science Foundation of China (Nos. 60473106, 60273060 and 60333010) the Ministry of Education of China (No. 20030335064) the Education Depart-ment of Zhejiang Province, China (No. G20030433)
关键词 Video segmentation Shadow elimination Hidden conditional random fields (HCRFs) On-line learning 自适应前景分割 视频分割 阴影消除 隐藏有条件随机场
  • 相关文献

参考文献10

  • 1Stauffer, C,Grimson, W.Learning patterns of activity using real-time tracking[].IEEE Trans Pattern Anal Machine Intell.2000
  • 2Wang, Y,Ji, Q.A Dynamic Conditional Random Field Model for Object Segmentation in Image Sequences[].CVPR’.2005
  • 3Migdal, J,Grimson, E.Background Subtraction Using Markov Thresholds[].IEEE Workshop on Motion and Video Computing.2005
  • 4Zhou, Y,Xu, W,Tao, H,Gong, Y.H.Background Segmentation Using Spatial-Temporal Multi-Resolution MRF[].IEEE Workshop on Motion and Video Computing.2005
  • 5Kumar, S,Hebert, M.Discriminative Random Fields: A Discriminative Framework for Contextual Interaction in Classification[].ICCV’.2003
  • 6Lafferty, J,McCallum, A,Pereira, F.Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data[].Proc Int’l Conf Machine Learning.2001
  • 7Sha, F,Pereira, F.Shallow Parsing with Conditional Random Fields[].Proc Human Language Technology- NAACL.2003
  • 8Wang, Y,Loe, K.F,Wu, J.K.A dynamic conditional random field model for foreground and shadow segmen-tation[].IEEE Trans Pattern Anal Machine Intell.2006
  • 9Zivkovic,Z.Improved Adaptive Gaussian Mixture Model for Background Subtraction[].ICPR’.2004
  • 10Quattoni, A,Collins, M,Darrell, T.Conditional Random Fields for Object Recognition[].Advances in Neural Information Processing Systems.2004

同被引文献4

  • 1Sivic J.Video Google:A Text Retrieval Approach to Object Matching in Videos[C]//Proc.of the International Conference on Computer Vision.[S.l.]:IEEE Press,2003.
  • 2Dhillon I.Weighted Graph Cuts Without Eigenvectors:A Multilevel Approach[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,29(11):1944-1957.
  • 3Gunawardana A.Hidden Conditional Random Fields for Phone Classification[C]//Proc.of International Conference on Speech Communication and Technology.[S.l.]:IEEE Press,2005.
  • 4张阳,李家兵,符茂胜,罗斌.基于时空域信息的视频对象分割算法[J].计算机工程,2009,35(11):237-239. 被引量:4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部