期刊文献+

压力涡流喷油器喷嘴结构因素对喷雾特性的影响 被引量:4

Influence of Structure Factor of Pressurized Swirl Injector on Spray Characteristic
下载PDF
导出
摘要 采用MIXTURE双相流数值模拟的方法研究压力涡流喷嘴结构因素对形成中空锥喷雾的影响。喷孔直径由0.5mm增大到1mm时,喷雾贯穿距离减少约60%,空心锥角增大7.5倍;喷孔长度由0.6mm增大到1mm时,喷雾贯穿距离增大约1.4倍,空心锥角减少约40%;有轴针时,空心锥角增加约4倍;改变轴针形状,将轴针头部加工成锥形,空心锥角增加约30%。喷孔内、外有无圆角对喷雾空心锥角大小的影响幅度在30%-40%。研究结果表明:喷孔长径比、喷孔入口处喷孔形状与轴针形状的配合和喷孔出口端形状是影响压力涡流喷嘴空心锥特性的重要因素。 The influence of structure factor of pressurized-swirl injector nozzle on hollow cone spray was studied by using MIXTURE dual phase flow numeric simulation method. When the nozzle diameter increases from 0.5 mm to 1 mm, the spray penetration distance decreases by 60% and the hollow spray cone angle increases by 7.5 times. When nozzle length increases from 0.6 mm to 1 mm, the spray penetration distance increases by 1.4 times and the hollow spray cone angle decreases by 40%. The hollow spray cone angle increases by 4 times by using the injector with axis needle and modification of needle configuration, such as processing the needle head into cone shape, can also increase the hollow spray cone angle by 30%. The variety scope of the hollow spray cone is about 30% - 40% for there is a fillet at the nozzle entrance and the nozzle exit or not. The study shows that the factors such as ratio of injector nozzle length to diameter, coordination of shape of nozzle and needle at the nozzle entrance, nozzle shape at nozzle exit are the important factors that influence the spray characteristic of pressurized-swirl injector.
出处 《内燃机学报》 EI CAS CSCD 北大核心 2007年第2期167-171,共5页 Transactions of Csice
关键词 压力涡流喷嘴 空心锥 喷雾 模拟 Pressurized swirl injector Hollow cone Spray Simulation
  • 相关文献

参考文献7

  • 1Terutoshi Tomoda, Shizuo Sasaki, Daisaku Sawada, et al.Development of Direct Injection Gasoline Engine-Study of Stratified Mixture Formation[ C]. SAE Paper 970539, 1997.
  • 2Harada J, Tomita T, Mizuno H, et al. Development of Direct Injection Gasoline Engine [ C ]. SAE Paper 970540,1997.
  • 3Furong Zhang, Shinya Wakabayashi, Naocjika Tokuoka. The Spray Structure from Swirl Atomizers (1^st Report: General Characteristics and Structure of a Spray of a Swirl Atomizer)[ J]. JSME(B), 1994,60(2) :675-680.
  • 4Furong Zhang, Hiroaki Terashima, Naocjika Tokuoka. The Spray Structure from Swirl Atomizers (2^st Report: Correlation Between Characteristics of Swirl Atomizers and Structure of Spray) [J]. JSME(B), 1994,60(2) :681-686.
  • 5Furong Zhang, Hiroaki Terashima, Naocjika Tokuoka. The Spray Structure from Swirl Atomizers (3^st Report: Dimensionless Expression of Spray Characteristics ) [ J ]. JSME(B), 1994,60(9):3 185-3 191.
  • 6Kiyomi Kawamura, Reiko Ueda, Norikazu Katsum. Flow Patten in Slit Nozzle for Direction Injector SI Gasoline Engine-Visualization Analysis with 50 Times Enlarge Acrylic Nozzle[J]. JSAE, 2004,35(2) :7-13.
  • 7Masayuki Yokota, Adinori Saito, Kiyomi Kawamura, et al.Analysis of Fuel Adhesion Behavior in Wall Impingement of Slit Nozzle Spray in Relation to Direction Injection Gasoline Engine[J]. JSAE, 2004,35(3):21-27.

同被引文献32

  • 1何志霞,袁建平,李德桃,梁凤标.柴油机喷嘴结构优化的数值模拟分析[J].内燃机学报,2006,24(1):35-41. 被引量:27
  • 2王琪,李旭林.柴油机喷油嘴的优化设计[J].农业装备与车辆工程,2007,45(7):13-16. 被引量:3
  • 3Fan Qinyin, Guo Chenhai, Kikuo Narumiya, et al. Numerical Analysis of Initial Shape of Nozzle Inject Flow[ C]. SAE Paper 2008-01-0243,2008.
  • 4Fan Qinyin, Guo Chenhai, Tosimi Tankagi, et al. Numerical Simulation of Atomization in Nozzle Injection Flow [ J ]. Journal of Computational Science and Technology, 2008,2 (2) : 295-306.
  • 5Hiroshi Hattori, Kikuo Narumiya, Mitsuhiro Tsue, et al. Analysis of Initial Breakup Mechanism of Diesel Spray Injected into High-Pressure Ambience [ C ]. SAE Paper 2004- 01-0528,2004.
  • 6Hiroshi Hattori, Kikuo Narumiya, Mitsuhiro Tsue, et al. Photographical Analysis of Initial Breakup Process of Diesel Spray [ C ]. Thermo-and Fluid Dynamic Processes in Diesel Engines ,2002.
  • 7Kunugi T. MARS for Multiphase Calculation [ J ]. Computational Fluid Dynamics Journal, 2001,19 ( 1 ) :563-571.
  • 8Kunugi T, Ose Y, Banat M. Slug-Plug-Flow Analyses of Stratified Flows in a Horizontal Duet by Means of the MARS [ C ]. Proceedings of the 5th ASME/JSME Joint Thermal Engineering Conference, San Diego, 1999.
  • 9Kunugi T, Kino C. DNS of Falling Film Structure and Heat Transfer via MARS Method [ J ]. Computer & Structures, 2005,83 ( 7 ) :455-462.
  • 10Brackbill J U, Kothe D B, Zemaeh C. A Continuum Method for Modeling Surface Tension [ J]. Journal of Computational Physics, 1992, 100(2) :335-354.

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部