期刊文献+

基于模糊竞争学习的模糊模型一体化辨识

An integrated identification of fuzzy model based on fuzzy competitive learning
下载PDF
导出
摘要 提出了一种利用MGS(modified Gram-Schmidt)算法建立非线性系统模型的建模方法,并给出了基于MGS算法的模型结构和参数辨识的一体化方法,即利用MGS正交变换对通过模糊竞争学习的聚类结果进行变换,确定对模型贡献大的规则,删除对模型贡献小的规则,同时对模型中的参数进行估计,实现模糊模型结构和参数的优化.仿真结果表明,提出的方法能够对非线性系统进行模糊建模. The modeling method is proposed to build the model of nonlinear system by the modified Gram-Schmidt method. An integrated algorithm is used to confirm the structure and the parameters of the model by means of the modified Gram-Schmidt algorithm. The fuzzy competitive learning is transformed to confirm the fuzzy rules by means of orthogonal transform. The modified Gram-Schmidt orthogonal transform is used to acquire the important rules and remove the less important rules. The parameters of fuzzy model are estimated via the proposed method. The structure identification and the parameter identification of fuzzy model are synchronously identified in the proposed algorithm. The structure and parameters of fuzzy model are optimized. With the illustration of the simulating result, the fuzzy model of non-linear system can be built by the proposed algorithm.
作者 王宏伟 顾宏
出处 《大连理工大学学报》 EI CAS CSCD 北大核心 2007年第2期282-286,共5页 Journal of Dalian University of Technology
基金 国家自然科学基金资助项目(60674061)
关键词 模糊建模 模糊竞争学习 模糊辨识 正交变换 fuzzy modeling fuzzy competitive learning fuzzy identification orthogonal transform
  • 相关文献

参考文献15

  • 1TOMOHIRO T,SUGENO M.Fuzzy identification of systems and its application to modeling and control[J].IEEE Trans on Syst,Man and Cybernetics,1985,15(1):116-132
  • 2HWANG H S,WOO K B.Linguistic fuzzy model identification[J].IEE Proc Control Theory Appl,1995,142(6):537-544
  • 3WANG L,LANGARI R.Complex systems modeling via fuzzy logic[J].IEEE Trans on Syst,Man and Cybernetics-1,1996,26(1):100-106
  • 4SUBRAMANIAN K R,FUSSELL D S.Applying space subdivision techniques to volume rendering[C]∥ Proceedings of the First IEEE Conference on Visualization.San Francisco:IEEE Press,1990:150-159
  • 5CHANG X G,WEI L,FARRELL J.A C-mean clustering based fuzzy modeling method[C]∥ The Ninth IEEE International Conference on Fuzzy Systems.San Antolio:IEEE Press,2000:937-940
  • 6YUSHINARI Y,PEDRYCZ W.Construction of fuzzy models through clustering techniques[J].Fuzzy Sets and Syst,1993,54(1):157-165
  • 7祖家奎,戴冠中,赵淳生,卢京潮.基于聚类和SVD算法的模糊逻辑系统结构辨识[J].控制理论与应用,2003,20(4):615-618. 被引量:6
  • 8张建刚,毛剑琴,夏天,魏可惠.模糊树模型及其在复杂系统辨识中的应用[J].自动化学报,2000,26(3):378-381. 被引量:17
  • 9FULAI C,TANG L.Fuzzy competitive learning[J].Neural Network,1994,7(3):539-551
  • 10CHEN S,BILLINGS S A.Representation of nonlinear systems:the NARMAX model[J].Int J Control,1989,49:1013-1032

二级参考文献8

  • 1GOLUB G H VAN C F.Matrix Computation [ M ].Baltimore,MD:Johns Hopkins Univerity Press,1989..
  • 2王立新.自适应模糊逻辑系统与控制[M].北京:国防工业出版社,1996..
  • 3WANG Lixin, MENDEL J M. Fuzzy basis function, universal approximation and orthogonal least squares learning [ J ]. IEEE Trans on Neural Networks, 1992,3(5) :807 - 814.
  • 4YEN J, WANG Dang. Applying statistical information criteria for optimal fuzzy model construction [ J ] . IEEE Trans on Fuzzy System,1998,6(6) :362 - 372.
  • 5MENDEL J M. Uncertain Rule-Based Fuzzy Logic Systems [ M ].Engell-Wood, NJ: Pnmtice Hall,2001.
  • 6YAGER R R, FILEV D P. Approximate clustering via the mountain method[J]. IEEE Trans on Systems, Man, and Cybernetics, 1994,24(8) : 1274 - 1284.
  • 7Chiu S,J Intelligent Fuzzy Systems,1994年,2卷,3期,267页
  • 8Jyh Shing,IEEE Trans Syst Man Cyber,1993年,23卷,3期,665页

共引文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部