期刊文献+

一种新的结构正割法在时间序列图像配准中应用 被引量:2

Application of new totally structured secant method to registration of time series images
下载PDF
导出
摘要 脑功能成像是进行神经科学研究的一项重要技术.在脑功能图像的数据分析中,时间序列图像的配准精度是对脑功能图像进行统计分析成功与否的关键.针对一种典型的非线性最小二乘形式的配准测度,引进一种新的结构正割法来计算其极小值.该方法给出了目标函数海森阵二阶信息项的一种新的较佳近似,而并非像高斯-牛顿法那样将其直接舍去,从而提高了计算精度;并且在近似的过程中,校正矩阵始终保持对称正定,所以在搜索下降方向的时候,总会找到一个解.模拟计算结果表明该方法配准精度高,计算时间较短,可以较好地解决图像配准问题. Brain functional imaging is an important tool in the study of nerval science, and it is necessary to register time series images. The new totally structured secant method is adopted to optimize the nonlinear least squares registration criteria, which gets a better approximation to the Hessian of the criteria by secant update, while the conventional method--Gauss-Newton algorithm directly gets rid of the second-order information of the Hessian. At the same time, the update matrix is always symmetrical and positive which makes it reversible, so a descent direction can be found in each step. The simulation registration results show that the algorithm can quickly obtain the best registration parameters with high precision.
出处 《大连理工大学学报》 EI CAS CSCD 北大核心 2007年第2期301-304,共4页 Journal of Dalian University of Technology
基金 国家科技部"九七三"前期专项资助项目(2001CCA00700) 国家自然科学基金资助项目(10571018)
关键词 图像配准 测度 结构正割法 拟牛顿方程 BFGS校正 FMRI image registration criteria structured secant method quasi-Newton equation BFGS-update fMRI
  • 相关文献

参考文献10

  • 1罗述谦,吕维雪.医学图像配准技术[J].国外医学(生物医学工程分册),1999,22(1):1-8. 被引量:69
  • 2FRISTON K J,ASHBURNER J,POLINE J B,et al.Spatial registration and normalization of images[J].Human Brain Mapping,1995,3(3):165-189
  • 3赵书俊.时间序列脑功能成象中的图象配准[J].中国图象图形学报(A辑),2000,5(5):416-419. 被引量:7
  • 4WELLS Ⅲ W M,VIOLA P,ATSUMI H,et al.Multi-modal volume registration by maximization of mutual information[J].Med Image Anal,1996,1(1):35-51
  • 5袁亚湘 孙文瑜.最优化理论与方法[M].北京:科学出版社,2001..
  • 6DENNIS J E JR,SCHNABLE R B.Least change secant updates for quasi-Newton methods[J].SIAM Rev,1979,21(4):443-459
  • 7HUSCHENS J.On the use of product structure in secant methods for nonlinear least squares problems[J].SIAM J Optim,1994,4(1):108-129
  • 8ZHANG J Z,DENG N Y,CHEN L H.A new quasi-Newton equation and related methods for unconstrained optimization[J].J Optim Theory Appl,1999,102(1):147-167
  • 9ZHANG J Z,XUE Y,ZHANG K.A structured secant method based on a new quasi-Newton equation for nonlinear least squares problems[J].BIT Numer Math,2003,43(1):217-229
  • 10罗述谦,李响.基于最大互信息的多模医学图象配准[J].中国图象图形学报(A辑),2000,5(7):551-558. 被引量:49

二级参考文献10

  • 1Maurer C R, Fitzpatrick J M. A review of medical image regis-tration In:Macjunas Neurosurgery. Park Ridge. IL: American Association of Neurological Surgeons, 1993, 17-44.
  • 2Woods R P, Mazziotta J C, Cherry S R, MRI-PET registration with automated algorithm. Journal of Computer Assisted Tomography. 1993,17(4):536-546.
  • 3Hill D L, Studholme C, Hawkes D J. Voxel similarity measures for automated image registration. In: Proc. Visualization in Biomedical Computing. 1994, SPIE 2359,205-216.
  • 4Collignon A, Maes F, Delaere D et al. Automated muhimodality image registration based on information theory. In:Proc. Information Processing in Medical Imaging Conf.Dordrecht. 1995,263-274.
  • 5Viola P, Wells I, William M. Alignment by maximization of mutual information. In: Proc. Int'l Conf. on Computer Vision.Cambridge, MA, 1995,16-23.
  • 6Maes F, Collignon A, Vandermeulen D et al. Multi-modality image registration by maximization of mutual information. In:Proc. IEEE Workshop Mathematical Methods in Biomedical Image Analysis. San Franciseo. CA. 1996,14-22.
  • 7West J. Fitzpatrick J M, Wang M Y et al. Comparison and evaluation of retrospective intermodality brain image registration techniques. Journal of Computer Assisted Tomography. 1997.21(4):554-566.
  • 8罗述谦,吕维雪.医学图像配准技术[J].国外医学(生物医学工程分册),1999,22(1):1-8. 被引量:69
  • 9秦承运,朱云龙,戴海波,梁江伟.基于Vuforia SDK与模型追踪技术的PC端AR技术开发[J].信息与电脑,2018,30(3):35-37. 被引量:6
  • 10陈爱群,宋晓莉.基于EasyAR的图像识别技术的研究[J].电子测试,2020,31(19):75-77. 被引量:6

共引文献209

同被引文献22

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部