期刊文献+

菊花微弱电信号的神经网络预测 被引量:7

Analysis and forecast of neural networks on weak electrical signals in chrysanthemum
下载PDF
导出
摘要 依据菊花(Dendranthema morifolium)植物电信号小波软阈值消噪后的数据,进行了其电信号时间序列的高斯径向基函数(RBF)神经网络预测.菊花植物电信号是一种微弱低频非平稳信号,最大幅值1 093.44μV,最小为-605.35μV,均值-11.94μV;功率谱分布为0-0.2 Hz.该结果说明,利用RBF人工神经网络对植物微弱电信号进行短期预测是可行的,其预测数据可作为以节能为目标依据植物自适应电信号特性建立温室和/或塑料大棚智能自动化控制系统的重要参数. Taking an electrical signal in the chrysanthemum (Dendranthema morifolium) as the time series and using the Gaussian radial base function (RBF) and a delayed input window chosen at 50, an intelligent RBF forecasting system is set up to forecast the signal after the wavelet soft-threshold de-noised backward, It is obvious that the electrical signal in chrysanthemum is a sort of the weak, unstable and low frequency signal. There is the maximum amplitude at 1 093.44 μV, minimum -605.35 μV, average value -11. 94μV; and below 0.2 Hz at frequency in the chrysanthemum respectively. The result shows that it is feasible to forecast the plant electrical signal for a short period by using RBF neural networks. The forecast data can be used as important preferences for intelligent automatic control systems based on the adaptive characteristic of plants to achieve energy saving on agricultural production in greenhouses and/or plastic lookums.
出处 《中国计量学院学报》 2007年第1期44-48,共5页 Journal of China Jiliang University
基金 国家自然科学基金资助项目(No.60671052)
关键词 植物微弱电信号 小波软阈值消噪 RBF神经网络 智能控制 菊花 plant weak electrical signal wavelet soft threshold de-noising RBF neural network intelligent automatic control chrysanthemum
  • 相关文献

参考文献19

二级参考文献128

共引文献92

同被引文献98

引证文献7

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部