期刊文献+

汇率联动期权的随机波动率模型及其定价

Foreign Equity Options Pricing with Stochastic Vatility
下载PDF
导出
摘要 当汇率联动期权的标的资产具有随机波动率过程时,用鞅定价理论讨论了汇率联动期权的价值,并由Feynman-Kac公式得到了其定价方程,进一步讨论了美式汇率联动期权的价值应满足的随机微分方程.当波动率过程为几何Brown运动模型时,由鞅方法讨论了汇率联动期权的定价闭式解. This paper studies the pricing of Foreign Equity Options on Stochastic Vatility models. By using martingale pricing methods and Feynman-Kac formula, we showed the stochastic differential equation which the options, must be satisfied and the general pricing expressions. Further more, when the stochastic vatility is Geometric Brown motion, by means of martingale analysis, the general pricing formula is obtained.
作者 周俊 龚日朝
出处 《湖南文理学院学报(自然科学版)》 CAS 2007年第1期8-10,21,共4页 Journal of Hunan University of Arts and Science(Science and Technology)
基金 湖南省社科基金资助项目(06YB63) 湖南省自科基金资助项目(06JJ20019) 湖南科技大学产业经济研究基地开放基金(KF0610).
关键词 随机波动率 汇率联动期权 鞅方法 Foreign Equity Options stochastic vatility martingale method
  • 相关文献

参考文献1

二级参考文献8

  • 1A G Z. Kemna and A C F Vorst. A pricing method for options based on average asset values,Journal of Banking and Finance, 1990, 14: 113-129.
  • 2S M Turnbull and L M Wakeman. A quick algorithm for pricing European average options,Journal of Financial and Quantitative Analysis, 1991, 26: 377-389.
  • 3L C G Rogers and Z Shi. The value of an Asian option, Journal of Applied Probability, 1995,32: 1077-1088.
  • 4S Simon, M J Goovaerts, and J Dhaene. An easy computable upper bound for the price of an arithmetic Asian option, Insurance: Mathematics and Economics, 2000, 26: 175-183.
  • 5H Geman and M Yor. Bessel processes, Asian options and perpetuities, Mathematical Finance,1993, 4: 345-371.
  • 6H Geman and M Yor. The valuation of double-barrier: A probabilitic approach, Working paper,1995.
  • 7M Yor. On some exponential functionals of Brownian Motion, Adv Appl Prob, 1992, 24: 509-531.
  • 8J A Yan. Introduction to martingal methods in option pricing, LN in Math 4, Liu Bie Ju Centre for Mathematical Sciences, City University of Hong Kong(1998).

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部