期刊文献+

黑白二次分配问题 被引量:1

Black and White Quadratic Assignment Problem
下载PDF
导出
摘要 二次分配问题QAP(quadratic assignment problem)的变种问题是当前的研究热点.实际应用中存在一类不能用QAP及其现有变种描述的问题,该类问题在QAP问题的基础上增加了额外的约束条件:将设备分为黑白两色,其中白色设备要求与至少一个黑色设备的距离不超过预定阈值.文章将之定义为黑白二次分配问题BWQAP(Black and White QAP).文章首先分析了它的计算复杂性,指出该问题是NP-难解问题,不存在ε-近似度的多项式时间近似算法(ε>0).同时证明了其可行解的存在性与黑白图上的支配集问题等价,也属于NP-难解问题.为了能在可接受的时间内得到大规模实例质量可接受的近似解,提出了一种求解BWQAP的启发式算法GFO.该算法利用QAP现有算法得到初始解,然后利用局部搜索策略完成解的可行化和优化.大量实验表明,该启发式算法能够有效地求解BWQAP问题的实例. Research on variants of the QAP (Quadratic Assignment Problem) has become a hot line in this area. There exists a new kind of problem in applications which can't be modeled as a QAP or its variants. The facility set is partitioned into sets of black and white facilities, and extra constraints are added to the QAP: Every white facility must be less than a predefined distance away from at least one black facility. The new problem is modeled as the black and white QAP (BWQAP) in this paper. It is indicated that the BWQAP is NP-Hard and there is no ε-approximation algorithm for it (ε〉0), furthermore, it is that it is also NP-Hard to determine whether a feasible solution exists by proving its equivalence to dominating sets on black and white graph. A new heuristics-GFO is then presented to obtain high quality solutions for large scale instances in reasonable time. The GFO employs existing algorithms for the QAP to obtain an initial solution, then applies local search to gain feasibility and optimization. Experiments on a great number of instances had shown that the new heuristic was effective and efficient to solve the BWQAP.
出处 《计算机学报》 EI CSCD 北大核心 2007年第3期440-447,共8页 Chinese Journal of Computers
基金 国家自然科学基金重大项目(90412007) 国家自然科学基金(60503003) 辽宁省自然科学基金(20051082) 大连理工大学青年教师培养基金资助
关键词 黑白二次分配问题 NP-难解 启发式算法 黑白图 支配集 black and white quadratic assignment problem NP-hard heuristics black and white graph dominating set
  • 相关文献

参考文献25

  • 1Sahni S,Gonzalez T.P-complete approximation problems.Journal of the ACM,1976.23(3):555-565
  • 2Burkard R E,Cela E,Klinz B.On the biquadratic assignment problem//Pardalos PM et al.Proceedings of the Quadratic Assignment and Related Problems,DIMACS Series in Discrete Mathematics and Theoretical Computer Science.AMS,Rhode Island.1994,16:117-146
  • 3Burkard R E.Selected topics on assignment problems.Discrete Applied Mathematics,2002,123(3):257-302
  • 4Knowles J D,Corne D W.Towards landscape analyses to inform the design of a hybrid local search for the multiobjective quadratic assignment problem//Abraham A et al.Proceedings of the Soft Computing Systems:Design,Management and Applications.Amsterdam:IOS Press,2002:271-279
  • 5Knowles J D,Corne D W.Instance generators and test suites for the multiobjective quadratic assignment problem//Fonseca C M et al.Evolutionary Multi-Criterion Optimization:Second International Conference,EMO 2003.Faro,Portugal.LNCS 2632,2003:295-310
  • 6Lee Chi-Guhn,Zhong M.The generalized quadratic assignment problem.Department of Mechanical and Industrial Engineering,University of Toronto,Working Paper,2003
  • 7Billionnet A,Elloumi S.Best reduction of the quadratic semi-assignment problem.Discrete Applied Mathematics.2001,109(3):197-213
  • 8Hahn P M,Kim B J,Hightower W L,Stützle T,Kanthak S,Samra H,Ding Z,Guignard M.The quadratic three-dimensional assignment problem:Exact and heuristic solution methods.The Wharton School,University of Pennsylvania,Philadelphia,Pennsylvania,USA:OPIM Working Report No.04-08-02,2004
  • 9Eliane M L,Nair M M A,Paulo O B N,Peter H,Tania Q.An analytical survey for the quadratic assignment problem.European Journal Operational Research,2007,176(2):657-690
  • 10Eiselt H A,Laporte G.A combinatorial optimization problem arising in dartboard design.Journal of the Operational Research Society,1991,42(2):113-118

二级参考文献30

  • 1Koopmans TC, Berkmann MJ. Assignment problems and the location of economic activities. Econometrica, 1957,25:53-76.
  • 2Sahni S, Gonzalez T. P-Complete approximation problems. Journal of the Association of Computing Machinery, 1976,23(3):555-565.
  • 3Taillard ED. Comparison of iterative searches for the quadratic assignment problem. Location Science, 1995,3:87-105.
  • 4Elshafei AN. Hospital layout as a quadratic assignment problem. Operations Research Quarterly, 1977,28(1):167-179.
  • 5Steinberg L. The backboard wiring problem: A placement algorithm. SIAM Review, 1961,3:37-50.
  • 6Finke G, Burkard RE, Rendl F. Quadratic assignment problems. Annals of Discrete Mathematics, 1987,31:61-82.
  • 7Maniezzo V, Colorni A. The ant system applied to the quadratic assignment problem. IEEE Trans. on Data and Knowledge Engineering, 1999,11(5):769-778.
  • 8Gambardella L, Taillard E, Dorigo M. Ant colonies for the QAP. Journal of the Operations Research Society, 1999, 50:167-176.
  • 9Nissen V. Solving the Quadratic Assignment Problem with Clues from Nature. IEEE Trans. on Neural Networks, 1994,5(1): 66-72.
  • 10Merz P, Freisleben B. A genetic local search approach to the quadratic assignment problem. In: Proc. of the 7th Int'l Conf. of Genetic Algorithms, Morgan Kanffman Publishers, 1997. 465-472.

共引文献14

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部