期刊文献+

基于GEP的多因子曲线拟合 被引量:1

Multiple factor fitting based on GEP
下载PDF
导出
摘要 融合了基于数据点拟合的公式发现和因式分解技术,提出并实现了基于基因表达式编程(Gene Expression Programming,GEP)的多因子曲线拟合MFF(Multiple Factor Fitting)。利用MFF算法能够直接由客观数据挖掘出多个多项式乘积形式的函数关系公式以拟合原始数据集所表示的曲线。MFF中采用了有特色的概率相关系数对GEP中的适应度函数进行优化,使得精度提高了27%。同时采用阈值递减序列TDQ(Threshold Degression Queue)使得GEP成功率比传统技术提高了最大58倍。 This paper proposes an approach to implement function fitting by multiple factors named MFF(Muhiple Factor Fitting) based on GEP(Gene Expression Programming).MFF can discover a function formed by multiple factors to fit the original curve. MFF optimizes the fitness function in GEP by special approach called probability correlation factor,which increases the precision by 27%.At the same time,adopting TDQ(Threshold Degression Queue) to improve the success-probability by 58 times compared with traditional approaches.
作者 罗瑜 汪锐
出处 《计算机工程与应用》 CSCD 北大核心 2007年第9期157-160,共4页 Computer Engineering and Applications
关键词 多因子曲线拟合 多项式分解 基因表达式编程 Multiple Factor Fitting Polynomial Functions Factorization Gene Expression Programming
  • 相关文献

参考文献7

  • 1Ferreira C.Gene Expression Programming:a new adaptive algorithm for solving problems[J].Complex Systems,2001,13(2):87-129.
  • 2Ferreira C.Gene Expression Programming[M].Portugal:Angra doHeroismo,2002.
  • 3Ferreira C.Gene Expression Programming in problem solving[M]//WSC6 tutorial,2001.
  • 4Ferreira C.Mutation,transposition,and recombination:an analysis of the evolutionary dynamics[C]//4th International Workshop on Frontiers in Evolutionary Algorithms,Research Triangle Park,North Carolina,USA,2002:614-617.
  • 5Ferreira C.Discovery of the boolean functions to the best density-classification rules using Gene Expression Programming[C]//2278 of LNCS:Proceedings of the 4th European Conference on Genetic Programming.Berlin:Springer-Verlag,2002:51-60.
  • 6Goldberg D E.Genetic Algorithms in search,optimization and machine learning[M].[S.l.]:Addison-Wesley,1989.
  • 7Hand D,Mannila H,Smyth P.Principles of Data Mining[M].MA:MIT Press,2001.

同被引文献3

  • 1Candida Ferreira.Gene Expression Programming:A New Adaptive Algorithm for Solving Problems[J]. Complex System 2001, 13(2): 87-129.
  • 2Zhou Chi, Xiao Weimin, Tirpak Thomas M., et al. Evolving accurate and compact classification rules with gene expression programming[J]. IEEE Transactions on Evolutionary Computation, 2003, 7(6): 519-531,.
  • 3陈瑜,唐常杰,李川,乔少杰,朱明放.LDecode:具有线性复杂度的GEP适应度评价算法[J].四川大学学报(工程科学版),2008,40(1):107-112. 被引量:9

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部