期刊文献+

一种改进的立体图像编码算法 被引量:3

A NEW STEREO IMAGE CODING ALGORITHM BASED UPON SELF-ORGANIZEING NEURAL NETWORK
下载PDF
导出
摘要 为了提高左图像的编码效率,提出了一种新的基于自组织神经网络的立体图像编码算法(SOM+VQ+DE),SOM+VQ+DE算法对右图像采用视差估计补偿技术(DE)编码,对左图像则使用基于自组织特征映射算法(SOM)的矢量量化编码来取代传统的JPEG方法,矢量量化与视差估计的残差均使用DCT+霍夫曼进行编码.对立体测试图像Pentagon的实验表明,SOM+VQ+DE算法能够有效地提高左图像的压缩效率:1)在压缩比均为6.5∶1时,SOM+VQ+DE算法的PSNR较JEPG+DE算法提高了2.42 dB;2)在PSNR均为30 dB时,SOM+VQ+DE算法的压缩比改善是JPEG+DE算法的1.8倍. To improve the coding efficiency of left image, a new stereo image coding algorithm (SOM+ VQ+DE) based upon self-organizing feature map (SOM) and disparity estimation (DE) is presented. Vector quantization (VQ) is used to predict left image instead of the general JPEG algorithm. SOM is used for the codebook training. Disparity estimation is used to predict right image as usual. Both the VQ and DE prediction errors are coded by DCT and entropy coding. Experimental results on stereo image Pentagon show that the SOM+ VQ + DE algorithm effectively improves the coding performance of left image than JPEG + DE algorithm: when compression is the same (6.5: 1), the improvement in PSNR is 2.42 dB; and when PSNR is the same (30 dB), the improvement in compression ratio is 1.8 times.
作者 李达 黎洪松
出处 《北京师范大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第1期50-52,共3页 Journal of Beijing Normal University(Natural Science)
关键词 立体图像 自组织神经网络 矢量量化 视差估计 stereo image self-organizing neural network vector quantization disparity estimation
  • 相关文献

参考文献13

  • 1Jiang Qin,Lee Joon Jae,Hayes Ⅲ Monson H.A wavelet based stereo image coding algorithm[J].IEEE Transactions on Circuits and Systems for Video Technology,1999,9(8):3157
  • 2Reynolds William D.Robert V K.The wavelet transforrn and the suppression theory of binocular vision for stereo image compression[J].IEEE Transaction on Circuits and Systems for Video Technology,1996,6(8):557
  • 3Moellenhoff Mark S,Maier Mark W.Characteristic of disparity-compensated stereo image pair residuals[J].Signal Processing:Image Communication,1998,14:55
  • 4杨赟,张兆扬,安平.基于小波的子空间投影立体图像编码算法[J].上海大学学报(自然科学版),2002,8(5):377-381. 被引量:1
  • 5吴勇军,殷勤业,曾雁星,方强,吴研.基于幅相分离立体匹配的小波立体图像压缩[J].西安交通大学学报,2002,36(12):1245-1248. 被引量:1
  • 6许昌满,张兆扬.基于马尔可夫模型和小波变换的立体残差图像编码[J].通信学报,2002,23(6):90-96. 被引量:2
  • 7Aydinoglu H,Hayes M H.Stereo image coding:a projection approach[J].IEEE Trans On IP.1998,7 (4):506
  • 8Kohonen T.An introduction to neural computing[J].Neural Networks,1988,1(3):110
  • 9Gafiychuk V V,Datsko B Y,Izmaylova J.Analysis of data clusters obtained by self-organizing methods[J].Physical-Statistical Mechanics and It'S Applications,2004,341(10):547
  • 10Fang W C,Sheu B J.A VLSI neural processor for image data compression using self-organizing networks[J].IEEE Trans.On Neural Networks,1992,3(5):1112

二级参考文献10

  • 1Tekalp A M.数字视频处理[M].北京:电子工业出版社,1998..
  • 2Oppenheim A V 刘树棠(译).信号与系统(第二版)[M].西安:西安交通大学出版社,1998.302-305.
  • 3Waldowski M. A new segmentation algorithm for videophone applications based on stereo image pairs [J]. IEEE Trans Commun, 1991, 39:1856-1868.
  • 4Poelzleitner W. Robust spacecraft motion estimation and elevation modeling using a moving binocular head [J]. Proc SPIE-Int Soc Opt Eng, 1993, 1829:46-57.
  • 5Aydinoglu H, Hayes M H. Stereo image coding [J]. Proc ISCAS, April, 1995, 1:247-250.
  • 6Aydinoglu H, Hayes M H. Stereo image coding: A projection approach [J]. IEEE Trans On Image Processing, 1998, 7(4):506-516.
  • 7Aydinoglu H, Hayes M H. Performance analysis of stereo image coding algorithms [J]. Proc ICASSP, 1996, 4:2191-2195.
  • 8Qin Jiang, Jae Lee Joon, Hayes Monson H. A wavelet based stereo image coding algorithm [C]. ICASSP, Mar, 1999.3157-3160.
  • 9张勇东,李桂苓.基于MPEG-2的3DTV视频编码方案的研究[J].电视技术,2000,24(9):3-4. 被引量:3
  • 10吴勇军,殷勤业,方强,刘继红,吴妍.基于物体轮廓和前向预测的自适应窗匹配[J].西安交通大学学报,2001,35(12):1227-1231. 被引量:2

共引文献1

同被引文献79

  • 1黎洪松.一种新的自组织神经网络算法[J].北京师范大学学报(自然科学版),2005,41(5):496-498. 被引量:5
  • 2陈云华,余永权,曾碧.一种基于新型遗传算法的块运动估计算法[J].计算机工程与应用,2005,41(34):86-88. 被引量:2
  • 3黎洪松,李达.一种新的基于自学习神经网络的静止图像编码方案[J].北京师范大学学报(自然科学版),2006,42(5):498-500. 被引量:2
  • 4Su X, Wah B. Multidescription video streaming with optimized reconstruction based DCT and neural network ompensations[J]. IEEE Trans. Image Processing, 2001, 3(1):123
  • 5Kohonen T. An introduction to neural computing[J]. Neural Networks, 1988,1:3
  • 6Gafiychuk V V, Datsko B Y, lzmaylova J. Analysis of data clusters obtained by self-organizing methods [J]. Physica A-statistical Mechanics and It's Applications, 2004,341(10) :547
  • 7Fang W C, Sheu B J. A VLSI neural processor for image data compression using self-organizing networks [J]. IEEE Trans. on Neural Networks, 1992,3(5):1112
  • 8Shigei N, Miyajima H, Maeda M. Numerical evaluation of incremental vector quantization using stochastic relaxation [J].IEICE Trans. on Fundamentals of Electronics Communcations and Computer, 2004, 87 (9) :2364
  • 9Tan X Y, Chen S C, Zhou Z H. Robust face recognition from a single training image per person with Kernel-based SOM-face[J].Advances in Neural Networks-ISNN 2004, PT1 Lecture Notes in Computer Science, 2004,3173:858
  • 10Tasrabadi N M, Feng Y. Vector quantization of images based upon the Kohobnen self-organizing feature maps [ C ]. International Joint Conference on Neural Networks, San Diego, CA, 1988, 1:101-118

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部