期刊文献+

一类非游荡算子的小扰动下的不变性

Invariance of one class of nonwandering operator under small perturbation
下载PDF
导出
摘要 对于一种新型的线性混沌算子——非游荡算子,研究Banach空间上的一类特殊非游荡算子——可逆线性有界非游荡算子,证明它的小扰动下的不变性.利用矩阵和不变集的方法证明在非游荡算子的一充分小的领域内,非游荡算子保持它的非游荡性不变.即充分靠近非游荡线性算子的可逆线性算子是非游荡的. For a new kind of linear chaotic operator( nonwandering operator), one class of nonwande-ring operators (invertible and bounded linear nonwandering operators) are studied, and their invariance under small perturbation in finite dimensional separable Banach Space is proved. It is proved that nonwandering operators keep their property of nonwandering on this small neighborhood by the methods of matrices and invariant set. That is to say, invertible and bounded linear operators which are close to the nonwandering operator enough are nonwandering operators.
出处 《江苏大学学报(自然科学版)》 EI CAS 北大核心 2007年第2期172-175,共4页 Journal of Jiangsu University:Natural Science Edition
基金 国家自然科学基金资助项目(10071003) 江苏大学学校青年基金资助项目(124390001)
关键词 非游荡算子 小扰动 压缩映射算子 直和分解 nonwandering operator small perturbation retraction mapping operator direct sum operator
  • 相关文献

参考文献8

  • 1Godefroy G,Shapiro J H.Operators with dense,invariant cyclic vector manifolds[J].J Funct Anal,1991,98:229-269.
  • 2周江波,卢殿臣,田立新.Frchet空间上的非游荡算子的遗传超循环分解[J].江苏理工大学学报(自然科学版),2001,22(6):88-91. 被引量:9
  • 3Brunkalla K P.Perturbation of Hypercyclic and Supercyclic Operator[D].Kent:Kent State University,2001.
  • 4Martinez-Gimenez F,Peris A.Chaos for backward shift operators[J].International J Birfurcation and Chaos,2002,12(8):1703-1705.
  • 5Delaubenfels,Emamirad R H.Chaos for functions of discrete and continuous weighted shift operators[J].Ergod Th and Dynam Sys,2001,21:1411-1427.
  • 6Chen Suiyang,Chu Leilei.An Introduction and Method to Dynamical Systems[M].[s.l.]:Science Press,2002.
  • 7Edward Ott.Chaos in Dynamical Systems[M].Cambridge:Cambridge University Press,1993.
  • 8周江波,卢殿臣,田立新.Banach序列空间上非游荡算子的存在性[J].江苏大学学报(自然科学版),2004,25(2):141-144. 被引量:4

二级参考文献1

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部