期刊文献+

一种基于变调整学习规则的模糊网页分类方法研究 被引量:4

A Fuzzy Classification of Web Pages Based on the Transposition-Learning Rule
下载PDF
导出
摘要 当类别之间交叉现象比较严重时,网页分类方法的精度就会下降.为准确地分类网页,首先给出一种模糊网页分类的系统结构,通过用成员函数替代分类网络中的权值变量,来提供一种可融入人类关于网页分类知识的机制.然后给出一种通用学习规则,来学习成员函数中的参数.通过理论推导,用李雅普诺夫函数分析和验证通用参数学习规则的学习收敛性,揭示参数学习算法朝最小误差方向调整参数的内在因素.最后在单参数学习算法收敛性的分析基础上,提出一种变调整规则的单参数学习算法,加快参数学习速度.从学习收敛性的理论论证和实验结果来看,这种网页分类方法是一种有效的分类方法. When the overlap of categories is excessive, the accuracy of Web page classification decreases. In order to classify the Web pages accurately, a framework of fuzzy classification of Web pages is presented, to give a mechanism of combining the human knowledge on Web page classification by a member function. Then a general learning rule of the coefficients is proposed. The Lyapunov function is used to analyze the convergence of the general learning rule, and it is proved in theory that the general learning rule has the inherent factor which adjusts the coefficient values to gain the minimum error. On the basis of theoretic convergence analyses of a single-coefficient learning algorithm, a transposition rule is proposed, which is applied to the single-coefficient learning algorithm to gain quick convergence speed in the phase of coefficient learning. It is shown that both from the theoretic deduction of the learning convergence and from the experiment result, the fuzzy classification of Web pages is an efficient method.
出处 《计算机研究与发展》 EI CSCD 北大核心 2007年第1期99-104,共6页 Journal of Computer Research and Development
基金 国家自然科学基金项目(60403027)
关键词 分类 模糊 学习 收敛 单参数 classification fuzzy learning convergence single-coefficient
  • 相关文献

参考文献11

  • 1范焱,郑诚,王清毅,蔡庆生,刘洁.用Naive Bayes方法协调分类Web网页[J].软件学报,2001,12(9):1386-1392. 被引量:53
  • 2Y Yang,S Slattery,R Ghani.A study of approaches to hypertext categorization[J].Journal of Intelligent Information Systems,2002,18(2/3):219-241
  • 3H Benbrahim,M Bramer.An empirical study for hypertext categorization[C].In:Proc of 2004 IEEE Int'l Conf on Systems,Man and Cybernetics.Los Alamitos,CA:IEEE Computer Society Press,20045952-5957
  • 4L Jimmy,Q Mohamed.A new method for query generation applied to learning text classifiers[C].In:Proc of the 2003 IEEE/WIC Int'l Conf on Web Intelligence.Los Alamitos,CA:IEEE Computer Society Press,2003.633-636
  • 5Jiu-Zhen Liang.SVM multi-classifier and Web document classification[C].In:Proc of the 2004 Int'l Conf on Machine Learning and Cybernetics.Los Alamitos,CA:IEEE Computer Society Press,2004.1347-1351
  • 6M Hannula,J Laitinen,E Alasaarela.Classification accuracy of a frequency analysis method:Comparison between supervised SOM and KNN[C].In:Proc of the 4th Int'l IEEE EMBS Special Topic Conf on Information Technology Applications in BiomedicineBirmingham.Los Alamitos,CA:IEEE Computer Society Press,2003.254-257
  • 7O Kwon,J Lee.Text categorization based on k-nearest neighbor approach for Web site classification[J].Information Processing and Management,2003,39(1):25-44
  • 8张茂元,卢正鼎.一种Agent数据库系统框架及其规则并行算法[J].软件学报,2004,15(8):1157-1164. 被引量:8
  • 9Zhang Maoyuan,Lu Zhengding,Zou Chunyan.A Chinese word segmentation based on language situation in processing ambiguous words[J].Information Sciences,2004,162(3/4):275-285
  • 10Zhang Maoyuan,Lu Zhengding.A fuzzy classification based on feature selection for Web pages[C].In:Proc of the 2004 IEEE/WIC/ACM Int'l Conf on Web intelligence.Los Alamitos,CA:IEEE Computer Society Press,2004469-472

二级参考文献4

共引文献59

同被引文献58

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部