期刊文献+

一种基于边缘特征的纸币污损检测方法 被引量:5

An Edge-Based Defect Detection Algorithm for Paper Currency
下载PDF
导出
摘要 污损检测是纸币清分中的一个重要环节.针对纸币上常见的笔迹及撕裂污损,提出了一种基于图像边缘特征的检测方法.首先将待检测图像与参考图像进行图像配准,然后采用Kirsch算子提取两图像的边缘信息,并提出了一种符合人的主观感受的边缘强度差的计算方法,在此基础上提取的污损特征,对于图像中新增加的边缘信息十分敏感,而对各像素的灰度值、边缘强度值的相对变化则具有很强的抗干扰性.将纸币划分为若干个相互重叠的子区域,通过对子区域内污损特征统计,来判定该子区域内是否存在污损.实验证明,该方法识别率高且稳定、可靠,满足实际要求.该方法已应用到实际的纸币清分系统中. Defect detection is an essential step in paper currency sorting. In this paper, an edge-based algorithm is proposed to detect the scratches and cracks appearing frequently on paper currency. An areabased image registration algorithm is used to overlay the sensed and referenced paper currency images. To ensure accurate correlation with the subjective feelings of human beings, an edge intensity differential of two images is then constructed from the edge information extracted by the Kirsch operator. The defect feature extracted from edge intensity differential is sensitive to the odd edge-information, and is robust to the gray (or edge ) intensity change. The paper currency image is divided into several overlapping subzones. Within each subzone, the defect feature is calculated to estimate the level of contamination. The proposed algorithm has already been applied to a practical sorting system, and the experimental results reveal that it is robust when applied to low quality paper currency.
出处 《计算机研究与发展》 EI CSCD 北大核心 2007年第2期258-264,共7页 Journal of Computer Research and Development
关键词 纸币清分 污损检测 图像配准 边缘检测 paper currency sorting defect detection image registration edge detection
  • 相关文献

参考文献7

  • 1Fumiaki Takeda,Sigeru Omatu.High speed paper currency recognition by neural networks[J].IEEE Trans on Neural Network,1995,6(1):73-77
  • 2A Frosini,M Gori,P Priami.A neural network based model for paper currency recognition and verification[J].IEEE Trans on Neural Networks,1996,7(6):1482-1490
  • 3刘家锋,刘松波,唐降龙.一种实时纸币识别方法的研究[J].计算机研究与发展,2003,40(7):1057-1061. 被引量:42
  • 4A Latif-Amet,A Ertüzün,A Ercil.An efficient method for texture defect detection:Sub-band domain co-occurrence matrices[J].Image and Vision Computing,2000,18(5):543-553
  • 5Hiroyuki Onishi,Shoji Tatsumi.A pattern defeat inspection method by parallel grayscale image comparison without precise image alignment[C].The 28th IEEE Annual Conf of the Industrial Electronics Society (IECON'02),Seville,Spain,2002
  • 6Lisa G Brown.A survey of image registration techniques[J].ACM Computing Surveys,1992,24(4):325-376
  • 7Barbara Zitová,Jan Flusser.Image registration methods:A survey[J].Image and Vision Computing,2003,21:977-1000

二级参考文献5

  • 1Fumiaki Takeda, Sigeru Ornatu. High speed paper currency recognition by neural networks. IEEE Trans on Neural Network,1995, 6(1): 73--77.
  • 2Nei Kato, Shin'chiro Omachi. A handwriting character recognition system using directional element feature. IEEE Trans on Pattern Analysis and Machine Intelligence, 1999, 21(3): 258-- 262.
  • 3J Illing, J Kittler. A survey of the hough transform. Computer on Vision, Graphics, Image Processing, 1988, 44 ( 1 ) : 87-- 116.
  • 4V F Leavers. Which hough transform. Computer on Vision,Graphics, and Image Processing: Image Understanding, 1993, 58(2) : 250-264.
  • 5A Frosini, M Gori, P Priami. A neural network-based modal for paper currency recognition and verification. IEEE Trans on Neural Networks, 1996, 7(6): 1482--1490.

共引文献41

同被引文献48

引证文献5

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部