期刊文献+

关于Stokes方程不满足inf-sup条件的加罚有限元方法

The penalized finite element method for the Stokes equations to circumvent the inf-sup condition
下载PDF
导出
摘要 目的讨论二维不可压缩Stokes方程基于等阶有限元R1-R1元的加罚有限元方法。方法在一定的正则性条件下,利用加罚有限元方法从理论上证明其收敛性。结果加罚有限元方法对于低等阶有限元R1-R1具有很好的稳定性。结论加罚有限元方法是一种行之有效的方法。 Aim The penalized finite element method is considered for the incompressible Stokes equations on two-dimensional domain,based on some lowest equal-order finite elements space pair(Xh, Mh) which do not satisfy the discrete inf-sup condition. Method The penalized finite element method is derived under some reqularity assumptions. Then, the convergence of the penalty method is obtained. Result The penlized method are excellently stable for the lowest equal-order finite element R1 --R1. Conclusion The penalized finite element method is a better method.
出处 《宝鸡文理学院学报(自然科学版)》 CAS 2007年第1期17-19,29,共4页 Journal of Baoji University of Arts and Sciences(Natural Science Edition)
基金 宝鸡文理学院科研计划项目(YK0620)
关键词 STOKES方程 加罚有限元方法 INF-SUP条件 Stokes equations penalized finite element method inf-sup condition
  • 相关文献

参考文献9

  • 1GIRAULT V,RAVIART P A.Finite element methods for the Navier-Stokes equations:Theory and Argorithms[M].Berlin:Springer,1986.
  • 2HE Yin-nian,LI Jian.Two-level penalized finite element methods for the stationary Navier-Stoke equations[J].International Journal of Information and Systems Sciences,2006,2(1),131-143.
  • 3LAYTON W,TOBISKA L.Two-grid method with backtracking for the Navier-Stokes equations[J].Appl Math Comput,1995,35:2 035-2 051.
  • 4TEMAM R.Navier-Stokes Equations[M].New York:North-Holland:Amsterdam,1984.
  • 5COURANT R.Variational methods for the solution of problems of equilibrium and vibrations[J].Bull Amer Math Soc,1943,49:1-23.
  • 6BREFORT B,GHIDAGLIA J M,TEMAN R.Attactors for the penalized Navier-Stokes equations[J].SIAM J Math Anal,1988,19:1-21.
  • 7SHEN J.On error estimates of the penalty method for unsteady Navier-Stokes equations[J].SIAM J Numer Anal,1995,32:386-403.
  • 8BREZZI F,DOUGLAS J.Stabilized mixed methods for the stokes problem[J].Numer Math,1988,53:225-235.
  • 9DOUGLAS J,WANG J.An absolutely stabilized finite element method for the stokes problem[J].Math Comp,1989,52:495-508.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部