期刊文献+

燃煤PM_(10)在磁场中聚并脱除理论与实验研究 被引量:7

Theoretical and Experimental Study of Aggregation and Removal of Fuel Coal PM_(10) in Magnetic Fields
下载PDF
导出
摘要 提出了燃煤可吸入颗粒物在均匀磁场中的二元碰撞聚并模型,模型通过直接跟踪在磁偶极子力、气体曳力、布朗力和重力作用下做相对运动的粒子,根据粒子的相对运动轨迹确定燃煤细微飞灰粒子间的聚并系数。在数值计算获得聚并系数的基础上,应用求解粒子聚并动力学方程的区域算法,计算了东胜烟煤燃烧产生的飞灰细微粒子在均匀磁场中的聚并脱除效率,并与实验进行了比较。结果表明,在0.098~9.314μm粒径范围内,0.576~3.758μm粒径的飞灰粒子聚并脱除效率最高;总脱除效率随外磁场强度、颗粒质量浓度以及粒子在磁场中停留时间的增加而增大,粒子饱和磁化时,总脱除效率达到最大值;实验结果与数值模拟结果相一致。模型预测结果表明,当颗粒质量浓度为40 g/m3时,燃煤飞灰细微粒子的总脱除效率可达52%。 A two-dimensional collision and aggregation model has been presented for fuelcoal inhalable particles in uniform magnetic fields.Through a direct tracking of particles in relative motion under the action of a magnetic dipole force,gas drag force,Brown force and gravity force,the model can determine the aggregation coefficient among fuel-coal-produced fine fly ash particles according to the relative motion trajectory of the particles.On the basis of the aggregation coefficient obtained from a numerical calculation,a regional algorithm was employed to seek solutions to the particle aggregation dynamic equation to calculate the aggregation and removal efficiency of fine fly ash particles produced in the combustion of Dongsheng-origin bituminous coal.A comparison has been made between the calculated efficiency and experimental one.The result shows that in the particle diameters ranging from 0.098 to 9.314μm,the fly ash particles with a diameter between 0.578 and 3.758μm have a maximal aggregation and removal efficiency.The total removal efficiency will increase with an increase in intensity of external magnetic fields,particle mass concentration and residence time of particles in the magnetic fields.When the particles are saturation magnetized,the total removal efficiency attains a maximum value.The test results are in good agreement with the numerical simulation ones.The forecast made by using the model under discussion indicates that when the particle mass concentration attains 40 g/m3,the total removal efficiency of fuel-coal-produced fly ash fine particles can reach 52%.
出处 《热能动力工程》 EI CAS CSCD 北大核心 2007年第2期176-180,共5页 Journal of Engineering for Thermal Energy and Power
基金 国家重点基础研究发展计划(973)基金资助项目(2002CB211600)
关键词 燃煤可吸入颗粒物 磁聚并 脱除效率 聚并系数 fuel coal inhalable particle,magnetic aggregation,removal efficiency,aggregation coefficient
  • 相关文献

参考文献15

  • 1袁竹林,李伟力,魏星,凡凤仙,沈湘林.细微颗粒在行波和驻波声场中运动特性数值实验[J].东南大学学报(自然科学版),2005,35(1):140-144. 被引量:7
  • 2赵永椿,张军营,高全,郭欣,郑楚光.燃煤飞灰中磁珠的化学组成及其演化机理研究[J].中国电机工程学报,2006,26(1):82-86. 被引量:20
  • 3单红丹,卢升高.火电厂粉煤灰的矿物磁性及其环境意义[J].矿物学报,2005,25(2):141-146. 被引量:21
  • 4PISKUNOV V N,GOLUBEV A I.The generalized approximation method for modeling coagulation kinetics-part 1:justification and implementation of the method[J].Journal of Aerosol Science,2002,33(1):51-63.
  • 5林潮,孙传尧.磁铁矿物的磁性及磁团聚对选矿过程的影响[J].矿冶,1997,6(3):25-31. 被引量:11
  • 6YING T Y,YIACOUMI S,TSOURIS C.High-gradient magnetically seeding filtration[J].Chemical Engineering Science,2000,55(6):1101-1113.
  • 7YIACOUMI S,ROUNTREE D A,TSOURIS C.Mechanism of particle flocculation by magnetic seeding[J].Journal of Colloid and Interface Science,1996,184(2):477-488.
  • 8ZIMMER A T,BARON P A,BISWAS P.The influence of operating parameters on number-weighted aerosol size distribution generated from a gas metal arc welding process[J].Journal of Aerosol Science,2002,33(3):519-531.
  • 9PRAKASH K,PRATIM B.Analytical expressions of the collision frequency function for aggregation of magnetic particles[J].Journal of Aerosol Science,2005,36(4):455-469.
  • 10PISKUNOV V N,GOLUBEV A I,BARRETT J C,et al.The generalized approximation method for modeling coagulation kinetics-part 2:comparison with other methods[J].Journal of Aerosol Science,2002,33(1):65-75.

二级参考文献68

  • 1罗家珂,杨久流,王淀佐.微细粒黑钨矿复合聚团分选新技术及扫描电镜图像研究[J].有色金属,1995,47(4):26-31. 被引量:1
  • 2兰泽全,曹欣玉,饶甦,赵显桥,黄镇宇,刘建忠,周俊虎,岑可法.煤中矿物质在炉内的迁移及沉积特性研究[J].热力发电,2004,33(6):19-23. 被引量:3
  • 3袁竹林,李伟力,魏星,凡凤仙,沈湘林.声波对悬浮PM_(2.5)作用的数值研究[J].中国电机工程学报,2005,25(8):121-125. 被引量:22
  • 4Saskia C, vender Zee. Characterization of particulate air pollution in urban and non-urban areas in the Netherlands [J]. Atmospheric Environment, 1998, 32(21 ):3717 - 3729.
  • 5Gray H Andrew. Source contributions to atmospheric fine carbon particle concentrations[ J ]. Atmospheric Environment, 1998, 32(22) : 3805 - 3825.
  • 6Beckwith P R, Ellis J B, Revitt D M, et al. Heavy metal and magnetic elationships for urban source sediments[J]. Phys Earth Planet Inter, 1996, 42:67-75.
  • 7Hanesch M, Petersen N. Magnetic properties of a recent parabrown-earth from Southern Germany[J]. Earth Planet Sci Letters, 1999, 169:85-97.
  • 8Hanesch M, Scholger R, Rey D. Mapping dust distribution around an industrial site by measuring magnetic parameters of tree leaves[J]. Atmospheric Environment, 2003, 37:5125-5133.
  • 9Kapicka A, Petrovsky E, Ustjak S, et al. Proxy mapping of fly-ash pollution of soils around a coal-burning power plant: a case study in the Czech Republic[J]. J Geochemical Exploration, 1999, 66:291-297.
  • 10Oldfield F, Hunt A, Jones M D H, et al. Magnetic differentiation of atmospheric dusts[J]. Nature, 1985, 317:516-518.

共引文献62

同被引文献50

引证文献7

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部