摘要
由于造影图像中的血管具有复杂的形态结构,经典的基于跟踪的一类方法在进行分割时容易丢失目标,因此其自动化程度和鲁棒性受到了严重的影响。提出了一种鲁棒的最大似然血管跟踪模型,该模型是建立在多种局部相似性测度和智能知识引导的基础上的,能够精确估计出血管轴线,并能正确判断分支点位置。实验结果表明,该模型具有很高的稳定性,能够为血管三维重建和临床诊断提供正确的依据。
The blood vessels in the angiograms take on complicated modalities. The classic tracking-based methods often lose the object in tracking the vessel tree, so that the capabilities of automatization and robustness are greatly affected. A robust Bayesian tracking model is presented to estimate the vessel axis and infer the vessel structure, which is based on multi-comparability' measurement and intelligent guidance. The experiment results reflect high stability of the model. The proposed method can provide good reference for 3D reconstruction and clinical diagnosis.
出处
《光学技术》
EI
CAS
CSCD
北大核心
2007年第2期252-254,257,共4页
Optical Technique
关键词
血管造影
血管分割
相似性测度
似然模型
X-ray angiogram
blood vessel segmentation
comparability measurement
likelihood model