摘要
设E是Hilbert空间,T是E中具非空不动点集F(T)的非线性映象,许多非线性映像的多种形式的迭代序列{xn}可逼近映像T的不动点p0∈F(T).并且逼近过程{xn}与不动点集F(T)有如下的钝角关系limsupn→+∞〈p-p0,‖xxnn--pp00‖〉0,p∈F(T).证明了一般非线性映像不动点逼近过程的这种几何结果,并应用这个结果研究了具误差Ishikawa迭代逼近非扩张映像不动点的钝角关系.
Let E be a Hilbert space,T be a nonlinear mapping with nonempty set of fixed points. For a lot of nonlinear mappings,the fixed points can be approximated by iteration sequence (xn). In the approximating process ,a geometric result,which is obtuse relation,can be expressed as follows lim sup n→+∞〈p-p0,xn-p0/||xn-p0||〉≤0,A↓p∈F(T).In the relevant condition,the geometric result holds for a lot of nonlinear mappings. This geometric result is proved for some nonlinear mappings. In particular, this geometric result for Ishikawa iteration with errors of nonexpansive mapping is proved.
出处
《内蒙古大学学报(自然科学版)》
CAS
CSCD
北大核心
2007年第2期132-137,共6页
Journal of Inner Mongolia University:Natural Science Edition
基金
天津市学科建设基金资助项目(100580204)
国家自然科学基金资助项目(10471033)