期刊文献+

Hilbert空间中逼近算子不动点的几何结果

Geometric Results for Approximating Fixed Points of Operators in Hilbert Spaces
下载PDF
导出
摘要 设E是Hilbert空间,T是E中具非空不动点集F(T)的非线性映象,许多非线性映像的多种形式的迭代序列{xn}可逼近映像T的不动点p0∈F(T).并且逼近过程{xn}与不动点集F(T)有如下的钝角关系limsupn→+∞〈p-p0,‖xxnn--pp00‖〉0,p∈F(T).证明了一般非线性映像不动点逼近过程的这种几何结果,并应用这个结果研究了具误差Ishikawa迭代逼近非扩张映像不动点的钝角关系. Let E be a Hilbert space,T be a nonlinear mapping with nonempty set of fixed points. For a lot of nonlinear mappings,the fixed points can be approximated by iteration sequence (xn). In the approximating process ,a geometric result,which is obtuse relation,can be expressed as follows lim sup n→+∞〈p-p0,xn-p0/||xn-p0||〉≤0,A↓p∈F(T).In the relevant condition,the geometric result holds for a lot of nonlinear mappings. This geometric result is proved for some nonlinear mappings. In particular, this geometric result for Ishikawa iteration with errors of nonexpansive mapping is proved.
出处 《内蒙古大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第2期132-137,共6页 Journal of Inner Mongolia University:Natural Science Edition
基金 天津市学科建设基金资助项目(100580204) 国家自然科学基金资助项目(10471033)
关键词 HILBERT空间 非线性映像 迭代序列 不动点 几何结果 Hilbert space nonlinear mapping iteration sequence fixed point geometric result
  • 相关文献

参考文献21

  • 1Tan K K,Xu H K.Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process[J].J,Math,Anal.Appl.,1993,178:301~308.
  • 2Zeng L C.A note on approximating fixed points of nonexpansive mappings by the Ishikawa iteration process[J].J,Math.Anal.Appl,1998,226:245~ 250.
  • 3Deng L.Convergence of the Ishikawa iteration process for nonexpansive mappings[J].J.Math,Anal,Appl.,1996,199:769~ 775.
  • 4邓磊,李胜宏.一致凸Banach空间中非扩张映射的Ishikawa迭代[J].数学年刊(A辑),2000,1(2):159-164. 被引量:8
  • 5Zeng L C.Ishikawa Iteration Process for Approximating Fixed Points of Nonexpansive mappings[J].Journal of Mathermatical Research and Exposition,2003,23 (1):33 ~ 39.
  • 6Bauschke H H.The approximation of fixed points of compositions of nonexpasive mappings in Hilbert spaces[J].J.Math.Anal.Appl.,1996,202:151~ 159.
  • 7Xu H K.Another control condition in an iterative method for nonexpansive mapping[J].Bull.Austral.Math.Soc.,2002,65:109~113.
  • 8Xu H K.Remarks on an iterative method for nonexpansive mappings[J].Commun.on.Appl.Nonlinear Anal.,2003,10:67~75.
  • 9Jung Im Kang,Yeol Je Cho,Haiyun Zhou.Convergence theorems of iteration sequences for nonexpansive mappings[J].Commun.Korean.Math.Soc.,2004,19:321 ~ 382.
  • 10Xu H K,Ori R G.An implicit iteration process for nonexpansive mappings[J].Numer.Funct.Anal.Optim.,2001,22:767~773.

二级参考文献20

  • 1Deng L. A note on approximating fixed points of nonexpansive mappings by the Ishikawa iteration process[J]. J Math Anal Appl,1998,226: 245-250.
  • 2Opial Z. Weak convergence of the sequence of successive approximations for nonexpansive mappings[J]. Bull Amer Math Soc,1967,73:595-597.
  • 3Shioji N, Takahashi W. Strong convergence of approximated sequences for nonexpansive mappings in Banach spaces[J]. Proc Amer Math Soc,1997,125:3 641-3 645.
  • 4Takahashi W. Nonlinear functional analysis[M]. Yokohama:Yokohama Publishers, 2000. 56-57.
  • 5Takahashi W, Tamura T. Limit theorems of operators by convex combinations of nonexpansive retractions in Banach spaces[J]. J Approximation Theory,1997,91:386-397.
  • 6Takahashi W, Tamura T,Toyoda M. Approximation of common fixed points of a family of finite nonexpansive mappings in Banach spaces[J]. Sci Math, Japon,2002,56: 475-480.
  • 7Wittmann R. Approximation of fixed points of nonexpansive mappings[J]. Arch Math,1992,58: 486-491.
  • 8Xu H K. Another control condition in an iterative method for nonexpansive mappings[J]. Bull Austral Math Soc,2002,65: 109-113.
  • 9Xu H K. Remarks on an iterative method for nonexpansive mappings[J]. Commun on Appl Nonlinear Anal,2003,10: 67-75.
  • 10Bauschke H H. The approximation of fixed points of compositions of nonexpansive mappings in Hilbert Spaces[J]. J Math Anal Appl, 1996,202:150-159.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部