期刊文献+

基于SVM-UBM的语言辨识系统

Automatic language identification using SVM-UBM
下载PDF
导出
摘要 支持向量机作为强大的理论和计算工具,已成功地应用在模式识别的众多领域中。研究了将支持向量机模型(SVM)应用于语言辨识的理论框架,提出了将Louradour序列核应用于语言辨识,并利用高斯混合模型(GMM)构造全局背景模型(UBM)对其进行了改进,从而导出了基于SVM-UBM的语言辨识系统。相关实验结果表明,该系统的识别率高于经典的高斯混合模型(GMM)和基于广义线性区分性核(GLDS)的支持向量机模型。 As powerful theoretical and computational tools,Support Vector Machines(SVMs) have been widely used in pattern classification of many areas.In this paper,we present a general framework for language identification using SVMs,introduce the use of Louradour sequence kernel into language identification system,and develop a universal background Gaussian Mixture Model (GMM) to improve it's performance.Experiment results demonstrate that the SVM-UBM system not only yields performance superior to those of a GMM classifier but also outperforms the system using Generalized Linear Discriminant Sequence(GLDS) kernel.
出处 《计算机工程与应用》 CSCD 北大核心 2007年第10期41-43,共3页 Computer Engineering and Applications
基金 国家自然科学基金(the National Natural Science Foundation of China under Grant No.60372038)
关键词 语言辨识 支持向量机 序列核 高斯混合模型 全局背景模型 language identification support vector machine sequence kernel Gaussian mixture model universal background model
  • 相关文献

参考文献15

  • 1Singer E,Torres-Carrasquillo P A,Gleason,et al.Acoustic,phonetic,and discriminative approaches to automatic language recognition[C]//Proc Eurospeech in Geneva,Switzerland,ISCA1-4 September 2003:1345-1348.
  • 2屈丹,王炳锡,藏传辉.基于GMM区分性训练方法的语言辨识系统[J].计算机工程与应用,2004,40(6):108-110. 被引量:4
  • 3Aluin F M,Przybocki M A,NIST 2003 language recognition evaluation[C]//Proc Eurospeech'03,Septenber 2003:1341-1344.
  • 4Matjěka P,Cernocky J,Sigmund M.Introduction to automatic language identification[C]//Proceedings of Conference Ronadioelektronika 2004,Brno,CZ,STUBA,2004:4.
  • 5Cristianini N,Shawe-taylor J.Support vector machines[M].Cambridge:Cambridge University Press,2000.
  • 6Moreno P,Ho P,A new SVM approach to speaker identification and verification using probabilistic distance kernels[C]//Proc Eurospeech,2003.
  • 7Konodor R,Jebara T,A kernel between sets of vectors[C]//Proc ICML,2003.
  • 8Le Q,Bengio S.Client dependent gmm-svm models for speaker verification[C]//Proc Networks,ICANN/ICONIP,2003.
  • 9Jaakkola T,Haussler D,Exploiting generative models in discriminative classifiers[C]//Advances in Neural Information Processing Systems 11,1998.
  • 10Wan V,Rrenals S.Speaker verification using sequence discriminant support vector machines[J].IEEE Trans on Speech and Audio Processing,2004.

二级参考文献6

  • 1[1]Y K Muthusamy,E Barnard,R A Cole. Reviewing Automatic Language Identification[J].IEEE Signal Processing Magazine,1994-10
  • 2[2]M A Zissman. Comparison of four approaches to automatic language identification of telephone speech[J].IEEE Trans Speech Audio Processing, 1996 ;4: 31~44
  • 3[3]D A Reynolds,R C Rose. Rosust text-independence speaker identification using Gaussian mixture speaker models[J].IEEE Trans Speech Audio Processing, 1995 ;3( 1 ) :72~83
  • 4[4]W H Tsai,W W Chang. Discriminative training of Gaussian mixture bigram models with applications to Chinese dialect identification[J].Speech Communication, 2002; 36: 317~326
  • 5[5]B H Juang,W Chou,C H Lee. Minimum classification error rate methods for speech recognition[J].IEEE Trans Speech Audio Processing,1997; 5: 257~265
  • 6[6]Y K Muthusamy,R A Cole,B T Oshika. The OGI Multi-language telephone speech corpus[R].Technical report,Center for Spoken Language Understanding Oregon Graduate Institute of Science and Technology, Portland, 1993

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部