期刊文献+

一种基于细分与优化技术的曲线逼近算法

Method based on subdivision and optimization for curve approximation
下载PDF
导出
摘要 提出一种新的基于细分与优化技术的曲线逼近算法:该算法能够根据数据点的分布情况自动完成曲率分析、控制点生成、控制多边形细分、控制点优化及算法迭代一系列过程,从而实现曲线逼近。数值实验表明,该算法简单、快速、有效。 A new method based on subdivision and optimization for curve approximation is proposed.The method can automatically do curvature analysis,controls points generating,control polygon subdivision,controls points optimization and iteration according to the distributing of data points ,and complete the curve approximation.Numerical experiments show that the method is simple, fast and effective.
机构地区 天津大学理学院
出处 《计算机工程与应用》 CSCD 北大核心 2007年第10期73-75,78,共4页 Computer Engineering and Applications
关键词 曲线逼近 曲率分析 控制多边形细分 控制点优化 curve approximation curvature analysis control polygon subdivision control points optimization
  • 相关文献

参考文献7

  • 1Kano H,Nakata H,Martin C F.Optimal curve fitting and smoothing using normalized uniform B-splines:a tool for studying complex systems[C]//Applied Mathematics and Computation,New York,2005,169(1):96-128.
  • 2Hoppe H,DeRose T,Duchamp T,et al.Piecewise smoothsurface reconstruction[C]//Proceedings Computer Graphics,SIGGRAPH'94,1994,28:295-302.
  • 3Lavoué G,Dupont F,Baskurt A.A new subdivision based approach for piecewise smooth approximation of 3D polygonal curves[J].Pattern Recognition,2005,38 (8):1139-1151.
  • 4Pottmann H,Leopoldseder S,Hofer M.Approximation with active bspline curves and surfaces[C]//Proceedings of Pacific Conference on Graphics and Applications.New York:IEEE Press,2002:8-25.
  • 5Pottmann H,Hofer M.Geometry of the squared distance function to curves and surfaces[M]//Hege H C,Polthier K.Visualization Math Ⅲ.[S.l.]:Springer,2003:223-244.
  • 6Pottmann H,Chen H Y,Lee I K.Approximation by profile surfaces[M]//Ball A.The Mathematics of Surfaces Ⅷ,Information Geometers.Amstendam:[s.n.],1998.
  • 7Lancaster P,Salkauskas K.Curve and surface approximation[M].New York:Academic Press,1986.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部