期刊文献+

基于小波变换与低秩校正的Toeplitz系统快速算法

Fast Algorithm for Toeplitz Systems Based on Wavelet Transform and Low Rank Update
下载PDF
导出
摘要 讨论了Toeplitz方程组的快速求解方法.首先研究了Toeplitz矩阵在多进制小波变换下的代数结构.利用数值实验得到,对多项式偶函数生成的Toeplitz系统实施双正交9~7小波后矩阵在一定的精度下具有有限的带宽特性.结合低秩校正方法,得到一类Toeplitz系统的快速求解方法,运算量级为O(N),其中N为系统的阶.该方法与通常使用的直接快速算法以及预条件共轭梯度法(PCG)分别需要的复杂度O(N^2)以及O(Nlog_2N)相比,运算量有较大幅度的减少. The fast algorithm for Toeplitz systems was studied. We first obtained the algebraic structure when M band wavelet transform was performed to Toeplitz matrix. By using numerical experiment under a precision, we showed that the matrix after wavelet transform was performed was featured by bandwidth for the generation function being polynomial. By using wavelet and low rank update approach, a fast algorithm for Toepliz system was proposed. The computational complexity was O (N), where N was the order. Compared with the complexity O(N2)and O(N log2N)required in commonly used direct fast method and PCG method, the computational cost of the proposed algorithm was greatly reduced.
作者 王德华
出处 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2007年第3期89-92,共4页 Journal of Hunan University:Natural Sciences
基金 国家自然科学基金(60573027)
关键词 小波变换 秩校正 Toeplitz系统 wavelet transform rank update Toeplitz system
  • 相关文献

参考文献5

  • 1Morf M.Doubling algorithms for Toeplitz and related equations[C]//Proc IEEE Internat Conf on ASSP.Piscataway,NJ:IEEE Press,1980:954-959.
  • 2HOOG F D.A new algorithms for solving Toeplitz systems of equations[J].Linear Algebra Appl,1987,88/89:123-138.
  • 3CHAN R,N G M.Conjugate gradient methods for Toeplitz systems[J].SIAM Review,1996,38(3):427-482.
  • 4SERRA S.Superlinear PCG methods for symmetric Toeplitz systems[J].Math Comput,1999,68(5):793-803.
  • 5成礼智,蒋增荣.拟带宽Toeplitz系统的秩1修正算法[J].国防科技大学学报,1995,17(1):104-108. 被引量:2

二级参考文献3

  • 1成礼智,数值计算与计算机应用,1994年,1期
  • 2成礼智,全国第四届并行算法学术会议论文集,1993年
  • 3李晓梅,并行算法,1992年

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部