期刊文献+

基于GM-GRNN的电力系统长期负荷预测 被引量:11

Long term load forecasting based on GM-GRNN in power system
下载PDF
导出
摘要 由于长期负荷历史数据比较少,因此预测难度较大。在分析了灰色预测和神经网络预测的优缺点的基础上,提出了一种新型的预测方法——GM-GRNN预测方法,此方法就是将灰色预测方法和人工神经网络中的广义神经网络相结合的预测方法,新方法发挥了灰色预测方法中的“累加生成”的优点,能够削弱原始数据中随机性并增加规律性,同时避免了灰色预测方法及其预测模型存在的理论误差。最后采用我国某省年用电量的预测的算例表明该方法的预测精度优于单一的灰色预测和单一的神经网络预测方法,为电力系统长期负荷预测提供了一种有用的方法。 Because of lack of history load data, it is more difficult to predict long time load. The paper analyzes the merits as well as defects of grey prediction method and artifical neural network (ANN) method, and proposes a novel forecasting method named grey neural network. The new method utilizes the accumulation generation operation of grey prediction to transform original data and produce accumulated data. The data possesses better regularity which makes it easier to model and train the ANN and avoid the theoretical error of grey prediction method. Case study shows that this method is more accurate and faster than single grey prediction and single neural network method. It is a useful method for long term load forecasting.
作者 吴耀华
出处 《继电器》 CSCD 北大核心 2007年第6期45-48,53,共5页 Relay
关键词 电力系统 长期负荷预测 人工神经网络 广义人工神经网络 灰色预测 power system: long term load forecasting artificial neural network generalized regression neural network grey prediction
  • 相关文献

参考文献6

二级参考文献23

  • 1韩祯祥,文福拴.人工神经元网络在电力系统中应用的新进展(二)[J].电力系统自动化,1993,17(2):55-62. 被引量:7
  • 2Specht D F. A general regression neural network. IEEE Transactions on Neural Networks, 1991,2(6) :568~576.
  • 3Tomandl D, Schober A. A modified general regression neuralnetwork (MGRNN) with new, efficient trainingalgorithms as a robust 'black box'-tool for data analysis. Neural Networks,2001,14(4) : 1023~1034.
  • 4Chtioui Y, Panigrahi S,Francl L. A generalized regression neural network and its application for leaf wentness prediction to forecast plant disease. Chemometrics and Intelligent Laboratory Systems, 1999,48 (1) : 47~58.
  • 5Leung M T,Chen A S,Daouk H. Forecasting exchange rates using general regression neural networks. Computers & Operation Research,2000,27(4) : 1093~1110.
  • 6Specht D F,Romsdahl H. Experience with adaptive probabilistic neural networks and adaptive general regression neural networks, In:Proceedings of the IEEE World Congress on Computational Intelligence, 1994,2:1203~1208.
  • 7Du Tao, Wang Xiuli, Wang Xifan.A combined model of wavelet and neural network for short term load forecasting[C].2002 International Conference on Power System Technology, Kunming, China, 13-17 Oct.2002: 2331-2335.
  • 8Hsu Y Y, et al. Design of Artificial Neural Networks for Short-term Load Forecasting,Part Ⅰand Part Ⅱ[J].IEEE Pt C,1991,138(5).
  • 9Lee K Y, Cha Y T, Park J H. Short-term Load Forecasting Using an Artificial Neural Network[J]. IEEE Trans on Power Systems, 1992,7(1):124-131.
  • 10Gross G,Galiana F D.Short-term Load Forecasting[J].Proceedings of IEEE,1987, 75(12).

共引文献115

同被引文献97

引证文献11

二级引证文献82

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部