期刊文献+

相对因子宽度与可S-因子分解矩阵

Relative factor width and S-factorizable matrices
下载PDF
导出
摘要 设S是实数集R的一个非空子集,如果存在S上的矩阵B,使得A=BBT,则称A是可S-因子分解的.对于一个实对称矩阵A,如果存在一个最小正整数k以及实矩阵(长方形)V,使得A=VVT,且V的每一列至多只有k个非零元素,则称A的因子宽度为k.利用可S-因子分解矩阵的S-秩以及因子宽度,引入相对因子宽度的定义,给出了一些可{0,1}-因子分解矩阵的相对因子宽度与因子分解之间的关系,最后利用S-秩和相对因子宽度,刻画了一类矩阵. Let S be a non-void subset of a set of real numbers R. A is called S-factorizable if it can be factorized as A = BB^T with bij∈ S. For a real symmetric matrix A, if there exists a minimum positive integer k and a real rectangular matrix V with A = VV^T, and there are at most k non-zero elements in each column, the factor width of A is k. By use of S-rank and factor width of the S-factorizable matrix A, the concept of relative factor width was introduced, and the relationship between the relative factor width and factorization of some{0, 1 }-factorizable matrices was given. Finally, some matrices were characterized with S-rank and relative factor width.
作者 王海鹰
机构地区 河海大学理学院
出处 《河海大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第2期233-237,共5页 Journal of Hohai University(Natural Sciences)
关键词 相对因子宽度 S-因子分解 S-秩 对角占优 relative factor width S-factorizable S-rank diagonally dominant
  • 相关文献

参考文献10

  • 1BERMAN A,XU C Q.{0,1} Completely positive matrices[J].Linear Algebra Appl,2005,399:35-51.
  • 2BOMAN E G,CHEN D,PAREKH O,et al.On factor width and symmetric H-matrices[J].Linear Algebra Appl,2005,405:239-248.
  • 3BERMAN A,PLEMMONS R J.Nonnegative matrices in the mathematical sciences[M].Philadelphia:SIAM,1994.
  • 4HILL R,WATERS S.On the cone of positive semidefinite matrices[J].Linear Algebra Appl,1987,90:81-88.
  • 5BARKER G,CARLSON D.Cones of diagonally dominant matrices[J].Pacific J Math,1975,57:15-32.
  • 6AXELSSON O.Iterative solution methods[M].Cambridge:Cambridge University Press,1994.
  • 7VARGA R S.On recurring theorems on diagonal dominance[J].Linear Algebra Appl,1976,13:1-9.
  • 8DREW J H,JOHNSON C R,LOEWY R.Completely positive matrices associated with M-matrices[J].Linear and Multilinear Algebra,1994,37:303-310.
  • 9KAYKOBAD M.On nonnegative factorization of matrices[J].Linear Algebra Appl,1987,96:27-33.
  • 10PLESKEN W.Solving XXtr = A over the integers[J].Linear Algebra Appl,1995,227:389-392.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部