期刊文献+

结构VAR模型辨识的条件互信息图模型 被引量:2

Identification of Structure VAR Models Using Conditional Mutual Information Graphs
原文传递
导出
摘要 在结构向量自回归(VAR)模型辨识的图模型中引入信息论方法.定义了线性条件互信息图,图中的结点表示时间序列不同时刻的随机变量,结点间的边表示随机变量之间存在的因果相依关系.提出了随机变量之间条件线性联系存在性的信息论检验方法.图中边的存在性用基于线性条件互信息的枢轴量检验,枢轴量的显著性用置换检验决定.用统计分析的方法确定当前变量之间联系的方向,建立了有向非循环图.最后以模拟序列为例,验证了所提出的方法是可行且有效的. A class graphical models, called linear conditional mutual information graph, is proposed for identification structural vector autoregression model. The vertex set denotes random variables at different times, and the directed edges denote causal dependence between the variables. The presence of the edges is tested by a statistics based on linear conditional mutual information. The permutation procedure is used to determine the significance of the test statistics. The direction of the relationships of the current variables is determined by a statistical method and lead to directed acyclic graph. The method is demonstrated by simulation time series with different dependence structures and error distribution.
作者 高伟 田铮
出处 《系统工程理论与实践》 EI CSCD 北大核心 2007年第3期91-97,共7页 Systems Engineering-Theory & Practice
基金 国家自然科学基金(60375003) 国家航空基础项目(03153059)
关键词 结构向量自回归模型 图模型 有向非循环图 互信息 线性条件互信息图 structural vector autoregression model graphical model directed acycllc graph mutual information linear conditional mutual information graph
  • 相关文献

参考文献10

  • 1Swanson N R,Granger C W J.Impulse response function based on a causal approach to residual orthogonalization in vector autoregressions[J].Journal of the American Statistical Association,1997,92(437):357-367.
  • 2Reale M.A Graphical Modeling Approach to Time Series[D].Lancaster University,1998.
  • 3Reale M G.Tunnicliffe wilson,identification of vector AR models with recursive structural errors using conditional independence graphs[J].Statistical Methods and Applications,2001,(10):49-65.
  • 4Reale M G,Tunnicliffe Wilson.The sampling properties of conditional independence graphs for structural vector autoregressions[J].Biometrika,2002,(89):457-461.
  • 5Alessio M.Graphical Models for Structural Vector Autoregressions,LEM Woking Paper 2003/07.
  • 6Palus M.Testing for nonlinearity using redundancies:Quantitative and qualitative aspects[J].Physica D,1995,(80):186-205.
  • 7Palus M.Detecting nonlinearity in multivariate time series[J].Physics Letters A,1996,(213):138-147.
  • 8Granger C,Lin J L.Using the mutual information coefficient to identify lags in nonlinear models[J].Journal of Time Series Analysis,1994,(15):371-384.
  • 9Diks C,Manzan S.Test for serial independence and linearity based on correlation integrals[J].Studies in Nonlinear Dynamics & Econometricsl 2002,(6):1-20.
  • 10高伟,田铮.结构VAR的有向非循环图模型[J].数学的实践与认识,2007,37(6):94-101. 被引量:1

二级参考文献8

  • 1Swanson N R,Granger C W J.Impulse response function based on a causal approach to residual orthogonalization in vector autoregressions[J].Journal of the American Statistical Association,1997,92(437):357-367.
  • 2Reale M.A Graphical Modeling Approach to Time Series,Doctoral Thesis[M].Lancaster University,1998.
  • 3Reale M,Tunnicliffe Wilson G.Identification of vector AR models with recursive structural errors using conditional independence graphs[J].Statistical Methods and Applications,2001,10:49-65.
  • 4Reale M,Tunnicliffe Wilson G.The sampling properties of conditional independence graphs for structural vector autoregressions[J].Biometrika,2002,89:457-461.
  • 5Alessio M.Graphical Models for Structural Vector Autoregressions[R].LEM Woking Paper,2003/07.
  • 6郑忠国,孙丽丽.带有反馈的因果模型中的独立性识别[J].应用数学学报,2000,23(2):299-310. 被引量:1
  • 7郑忠国,童行伟,张艳艳.因果模型中因果效应的可识别性研究[J].中国科学(A辑),2001,31(12):1080-1086. 被引量:4
  • 8梁宇,郑忠国.一类因果模型的可识别性条件[J].数学物理学报(A辑),2003,23(4):456-463. 被引量:3

同被引文献15

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部