期刊文献+

电力系统负荷恢复问题的混合遗传算法求解 被引量:17

Hybrid Genetic Algorithm for Power System Load Restoration
下载PDF
导出
摘要 对电力恢复过程中最后一个阶段的负荷恢复问题进行了研究,把电力系统的负荷恢复问题建模为带众多约束条件的0?1背包问题,并设计了一种将贪心算法与改进遗传算法相结合的改进混合遗传算法来对问题进行求解。在遗传算法之前,先用贪心算法生成该问题的贪心解,然后让每一代中有着最差适应度的个体无条件的变为此贪心解,使最终结果至少不会比贪心法差。解决了系统在负荷恢复过程中的潮流计算问题,采用先求系统的频率变化,然后再计算潮流分布的方法,将约束条件和目标函数融合在一起,通过建立一种偏序关系,避免了罚函数选择参数的困难。利用贪心算法求解背包问题的快速性和多父体杂交的非凸组合技术,使算法具有求解的快速性和在解空间内搜索的遍历性。算例求解结果表明了该算法在负荷恢复问题中的有效性。 The problem of the load restoration at the last stage of the power system restoration was studied in the paper. The problem of load restoration was modeled as a zero-one knapsack problem with many constraints and a hybrid genetic algorithm that combined the greedy algorithm and modified genetic algorithm together was introduced to solve the problem. In the algorithm greedy algorithm was used first to produce the greed solution and then the worst solution of each generation produced by the genetic algorithm was replaced by the greed one on any condition. This made the final solution better than the greed one. To obtain the power flow during the load restoration, frequency was calculated before power flow is done in the proposed method. In the paper the constrained conditions and the objective functions were combined together. By the means of defining a partial-order relation it need not to implement a penalty function parameter constraint-handling approach. The algorithm had the characteristic of quick and global searching because of the non-convex combination technique in the multi-parents crossover and the quick character of the greedy algorithm for knapsack problem. The simulation results show the feasibility and availability of the algorithm.
出处 《电工技术学报》 EI CSCD 北大核心 2007年第2期105-109,共5页 Transactions of China Electrotechnical Society
关键词 恢复控制 混合遗传算法 贪心算法 负荷恢复 Restoration control, hybrid genetic algorithm, greedy algorithm, load restoration
  • 相关文献

参考文献5

二级参考文献35

  • 1庄劲武.舰艇电力系统稳态参数计算方法的研究[J].海军工程大学学报,2000,12(5):20-24. 被引量:16
  • 2张良杰,毛志宏,李衍达.遗传算法中突变算子的数学分析及改进策略[J].电子科学学刊,1996,18(6):590-595. 被引量:26
  • 3[1]Milanovic J. V., Hiskens I. A., Maslennikov V. A.. Ranking loads in power system comparison of different approaches [J]. IEEE Trans. PWRS, 1999, 14(2):614-619.
  • 4[2]闵勇(Ming Yong). 复杂扩展式电力系统中功率-频率动态过程的分析及低频减载装置整定(Analyzing power-frequency dynamic process and tuning under-frequency load shedding equipment in extended complex power systems) [D]. 北京:清华大学电机系(Beijing:Tsinghua University),1991.
  • 5[4]Kremens Z. B., Labuzek M.. Load flow analysis incorporating frequency as a state vector variable[C]. Ninth International Conference on Harmonics and Qualityof Power, 2000:526-530.
  • 6[5]Balas E., Zemel E.. An algorithm for zero-one knapsack problems [J]. Operations Research, 1980, 28(5):1131-1154.
  • 7[8]Almeida K. C., Galiana F. D.. Critical cases in the optimal power flow [J]. IEEE Trans. PWRS, 1996, 11(3):1509-1518.
  • 8[9]Stott B., Marinho J. L.. Linear programming for power-system network security applications [J]. IEEE Trans. PAS, 1979,PAS-98(3):837-848.
  • 9[10]周云海(Zhou Yunhai). 大停电事故后恢复控制技术研究(Research of fast restoration technique for power system blackout)[D]. 北京:清华大学电机系(Beijing:Tsinghua University),2002.
  • 10Bulter K L, Sarma N D R. General reconfiguration methodology for AC radial shipboard power systems.IEEE 2000 Power Engineering Society Winter Meeting,2000 (2) : 1226-1230.

共引文献97

同被引文献218

引证文献17

二级引证文献156

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部