期刊文献+

分布式数据库关联规则更新算法

Updating Mining Algorithm for Distributed Association Rules
下载PDF
导出
摘要 提出了一种分布式关联规则增量更新算法(IUAAR),它可对数据库发生变化的情况进行归类.该算法主要采用改进了的FP树结构,通过传送被约束子树来挖掘全局频繁项目集,并充分利用快速分布式挖掘算法建立的各局部FP树,只对新增加了的全局频繁项目修改相应的改进FP树,挖掘其对应的被约束子树,同时利用已挖掘的全局频繁项目集对原全局频繁项目对应的被约束子树进行有效修剪.实验结果表明,该算法的运算速度比快速分布式挖掘算法提高了1倍,在最坏的情况下,对各局部数据库也仅需要扫描一遍,从而可提高数据库的维护效率. A new algorithm IUAAR (incremental updating algorithm for association rules) is introduced, by which the change of database records can be classified. The improved FP-tree structure is adopted and the global frequent itemsets are mined by transmitting constrained sub-tree. Utilizing the local FP-tree created by FDMA (fast distributed mining algorithm) only the FP-tree of the added global frequent items is modified. Moreover, using the mined results, the constrained sub-trees of the incremental global frequent itemsets that are transmitted in network are mined. The constrained sub-trees of the original global frequent itemsets can be pruned without transmitting therm Experiments show that in the worst case, IUAAR only scans every local transaction database once, thus the communication cost is dramatically decreased and the maintenance efficiency of global frequent itemsets is improved, and the mining speed of IUAAR algorithm is increased by at least two times in comoarison with FDMA.
作者 宋宝莉 覃征
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2007年第4期416-420,共5页 Journal of Xi'an Jiaotong University
基金 国家自然科学基金资助项目(60542004)
关键词 分布式数据库 全局频繁项目集 约束子树 增量更新 distributed database global frequent itemset constrained sub-tree incremental updating
  • 相关文献

参考文献8

二级参考文献33

  • 1Ramaswamy S. et al.. On the discovery of interesting patterns in association rules. In: Proceedings of the 24th International Conference on Very Large Data Bases (VLDB), New York, 1998, 368~379
  • 2Srikant R. et al.. Mining quantitative association rules in large relational tables. In: Proceedings of the 1996 ACM SIGMOD Conference on Management of Data, Montreal, 1996, 1~12
  • 3Srikant R. et al.. Mining generalized association rules. In: Proceedings of the 21st International Conference on Very Large Data Bases (VLDB), Zurich, Switzerland, 1995, 407~419
  • 4Pen J. et al.. CLOSET: An efficient algorithm mining frequent closed itemsets. In: Proceedings of the 2000 ACM SIGMOD International Workshop on Data Mining and Knowledge Discovery, Dallas, TX, 2000, 11~20
  • 5Zaki M.J. et al.. CHARM: An efficient algorithm for closed association rule mining. Computer Science, Rensselaer Polytechnic Institute, Troy, New York: Technical Report 99-10, 1999, 1~24
  • 6Han J. et al.. Mining frequent patterns without candidate generation. In: Proceedings of the 2000 ACM SIGMOD Conference On Management of Data, Dallas, TX, 2000, 1~12
  • 7Bing Liu et al.. Analyzing the subjective interestingness of association rules. Intelligent Systems, 2000, 15(5): 47~55
  • 8Cheung D.W. et al.. Maintenance of discovered association rules in large databases: an incremental updating technique. In: Proceedings of the 1996 International Conference on Data Engineering, New Orleans, Louisiana, 1996, 106~114
  • 9Feldman R. et al.. Efficient algorithms for discovering frequent sets in incremental databases. In: Proceedings of the 1997 ACM SIGMOD Workshop on Research Issues on Data Mining and Knowledge Discovery, Tucson, Arizona, 1997, 59~66
  • 10Agrawal R. et al.. Mining associations between sets of items in massive databases. In: Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data, Washington D C, 1993, 207~216

共引文献270

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部