期刊文献+

基于直方图偏差约束的快速模糊C均值图像分割法 被引量:5

Fast Fuzzy C-Means Image Segmentation Method Based on Histogram Deviation Constraints
下载PDF
导出
摘要 为了解决传统模糊C均值(FCM)聚类分割算法计算耗时的问题,提出了在直方图偏差约束条件下的快速FCM图像分割算法.通过对原始图像重新采样以减小FCM算法数据处理的数量,利用平滑后归一化直方图的距离偏差作为约束条件来计算合适的采样率,以控制重新采样产生的图像失真,得到满足正确分割所需要的阈值,并在采样率计算中采用黄金分割法搜索满足约束条件的采样率.实验结果表明,在保持传统FCM聚类算法分割效果的前提下,所提算法的分割时间分别仅为传统的FCM、二维熵、Otsu等算法的3.0%~11.2%、9.2%~30.2%和15.0%~52.0%. In order to solve the problem that the traditional fuzzy C-means (FCM) segment algorithm is time consuming, a fast FCM algorithm based on histogram deviation constraints is proposed, in which the initial image is re-sampled to reduce the quantity of data processing, the distance deviation of normalized histogram after smoothing is utilized as a constraint condition to calculate proper sample rate so as to control the image distortion due to resample, and the required threshold satisfying the correct segmentation is obtained. The golden section searching algorithm is used to search the sample rate meeting the constraint condition. Experimental results show that the segment time of the proposed algorithm is only 3.0%-11.2%, 9.2%-30.2% and 15.0%- 52.0% of the traditional FCM, 2D entropy and Otsu algorithm respectively while keeping the same segment effect as that the traditional FCM has.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2007年第4期430-434,共5页 Journal of Xi'an Jiaotong University
关键词 图像分割 模糊C均值 直方图约束 image segmentation fuzzy C-means histogram constraint
  • 相关文献

参考文献12

  • 1Bezdek J C.Pattern recognition with fuzzy objective function algorithms[M].New York:Plenum,1981.
  • 2Yamany S M,Fareg A A,Hsu S.A fuzzy hyperspectral classifier for automatic target recognition (ATR)systems[J].Pattern Recognition Letters,1999,20(11/13):1431-1438.
  • 3He Renjie,Datta S,Sajja B R,et al.Adaptive FCM with contextual constrains for segmentation of multispectral MRI[C]//Proceedings of the 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.Piscataway,USA:IEEE,2004:1660-1663.
  • 4Hathaway R J,Bezdek J C.Generalized fuzzy C-means clustering strategies using L norm distance[J].IEEE Trans Fuzzy Syst,2000,8(5):576-572.
  • 5Liew A W C,Leung S H,Lau W H.Fuzzy image clustering incorporating spatial continuity[J] Inst Elec Eng Vis Image Signal Process,2000,147(2):185-192.
  • 6Liew A W C,Yan H.An adaptive spatial fuzzy clustering algorithm for 3-D MR image segmentation[J].IEEE Trans Med Imag,2003,22:1063-1075.
  • 7Ahmed M N,Yamany S M,Mohamed N,et al.A modified fuzzy C-means algorithm for bias field estimation and segmentation of MRI data[J].IEEE Trans Med Imag,2002,21:193-199.
  • 8Li Xiang,Li Lihong,Lu Hongbing,et al.Inhomogeneity correction for magnetic resonance images with fuzzy C-means algorithm[C]//Proceeding of SPIE,Medical Imaging 2003:Image Processing.San Diego,USA:The International Society for Optical Engineering,2003:995-1005.
  • 9Chen S C,Zhang D Q.Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure[J].IEEE Transactions on Systems,Man,and Cybernetics,Part B:Cybernetics,2004,34(4):1907-1916.
  • 10Otsu A N.A threshold selection method from graylevel histogram[J].IEEE Trans on Systems,Man,and Cybernetics,1979,9(1):62-66.

二级参考文献6

  • 1Doyle W.Operation Useful for Similarity-Invariant Pattern Recognition[J].J Asssoc Comput Mach, 1962;9:259-267.
  • 2Otsu N.A Threshold Selection Method from Gray-Level Histograms [J].IEEE Trans ,SMC, 1979;9(1):62-66.
  • 3J N Kapur,P K Sahoo.A New Method for Gray-Level Picture Thresholding using the Entroy of the Histogram[J].Computer Vision Graphics,and Image Processing, 1985;29:273-285.
  • 4J H Holland.Adaption in Natural and Artificial Systems[M].Ist ed,1975,2end ed,Cambridge, MA: MIT press, 1992.
  • 5Zhang TianXu,Peng Jiaxiong,Li Zongjie.An Adaptive Image Segmentation Method with Visual Nonlinearity Characteristics[J].IEEE Trans on SMC-Part B,1996;26(4):619-627.
  • 6Pun T.A New Method for Gray-Level Picture Thresholding Using the Entroy of the Histogram[J].Signal Processing,1980;2:223-237.

共引文献12

同被引文献43

  • 1吴晓辉,刘炯,孟峥峥,汪晓明,李彦明.支持向量机在电力变压器故障诊断中的应用[J].西安交通大学学报,2007,41(4):457-457. 被引量:25
  • 2苟世宁,杜海峰,栗茂林,庄健.一种改进的模糊人工免疫网络数据分类方法[J].西安交通大学学报,2007,41(5):585-588. 被引量:2
  • 3Bezdek J C. Pallern Recognition with Fuzzy Objective Funetion Algorithms[M]. New York: Plenurn,1981.
  • 4Yang Miin Shen, Hu Yu Jen, Lin Karen Chia-Ren, et al. Segmentation Techniques for Tissue Differentiation in MRI of Ophthalmology Using Fuzzy Clustering Algorithms [J]. Magnetic Resonance Imaging,2002,20 (2):173-179.
  • 5Pham D L. Spatial Models for Fuzzzy Clustering[J]. Computer Vision and Image Understanding, 2001,84(2):285-297.
  • 6Hathaway R J,Bezdek J C. Extending Fuzzy and Probabilistie Clustering to Very Large Data Sets [J]. Computationa Statistics & Data Analysis,2006,51(1):215-234.
  • 7Szilagyi L, Benyo Z, Szilagyii S M, et al. MR Brain Image Segmentation Using an Enhanced Fuzzy e-Means Algorithm [C]//Proc of the Annual Int'l Conf of IEEE EMBS,2003: 17-21.
  • 8Goktepe A B, Altun S, Sezer A. Soil Clustering by Fuzzy c-Means Algorithm[J]. Advances in Engineering Software, 2005,36(10) :691-698.
  • 9Fiedler M. Algebraic connectivity of graphs [J]. Czechoslovak Mathematical Journal, 1973,23 : 298-305.
  • 10Shi J, Malik J. Normalized cuts and image segmentation. IEEE Trans. Pattern Analysis and Machine Intelligence, 2000,22(8): 888-905.

引证文献5

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部