期刊文献+

一种基于立方体的复杂查询的高效算法 被引量:2

Fast Algorithm for Complex Queries Based on Data Cube
下载PDF
导出
摘要 提出一种高效的整体多特征方查询算法。该算法首先将数据立方体水平分块成多个小数据集,然后将各子查询中的聚集函数分类,并对其中的分布和代数聚集函数使用分布聚集特性优化计算,使得整体多特征方查询可以局部使用分布多特征方查询的优化计算方法。实验结果证明该方法可以有效地提高整体多特征方查询的效率。 This Paper proposed a fast algorithm for Holistic MF-Cubes queries, which included partition datacube into smaller sub-cubes and classify aggregating functions and identify the distribute ones, which can use the coarse-finer granularities computing property. Experiment shows that this algorithm is highly efficient to the Holistic MF-Cubes query.
出处 《计算机应用研究》 CSCD 北大核心 2007年第3期30-33,共4页 Application Research of Computers
基金 澳大利亚ARC项目(DP0559536 DP0667060) 国家自然科学基金资助项目(60463003)
关键词 复杂查询 多特征方 多粒度聚集 complex queries multi-feature cube multi-granulated aggregation
  • 相关文献

参考文献7

  • 1GRAY J, BOSWORTH A, LAYMAN A, et al. Datacube: a relational aggregation operator generalizing group-by, cross-tab, and sub-totals :proc. of the IEEE ICDE[ C ]. [ S. 1. ] : [ s. n. ], 1996:152-159.
  • 2HAN J, KAMBER M. Data mining: concepts and techniques[ M].[ S. 1. ] : Morgan Kaufmann Publishers, 2001.
  • 3AGARWAL S, AGRAWAL R, DESHPANDE P M. On the computation of multidimensional aggregates: proc. of Int' on Conf. Very Large Data Bases[ C ]. [ S. 1. ] : [ s. n. ], 1996:506-521.
  • 4ROSS K A, SRIVASTAVA D, CHATZIANTONIOU D. Complex aggregation at multiple granularities: EDBT' 98 [C].[S.1.] :Springer-Verlng, 1998:263- 277.
  • 5ROSS K, SRIVASTAVA D. Fast computation of sparse datacubes:VLDB' 97: proc. of Int. Conf. on Very Large Data Bases [ C ].Athens : [ s. n. ], 1997 : 116-125.
  • 6BEYER K S, RAMAKRISHNAN R. Bottom-up computation of sparse and iceberg cubes: proc. of ACM SIGMOD Conf. [ C ]. Philadelphia:[ s. n. ], 1999:359-370.
  • 7ZHAO Y, DESHPANDE P M, NAUGHTON J F. An array-based algorithm for simultaneous multidimensional aggregates: proc. of ACM SIGMOD Conf. [ C]. Tucson: [ s. n. ], 1997 : 159-170.

同被引文献12

  • 1覃泽,王日凤,张师超,郭燕萍,曾德胜.多特征方计算优化策略[J].计算机应用,2006,26(7):1655-1658. 被引量:2
  • 2Ross K A,Srivastaca D,Chatziantoniou D.Complex Aggregation at Multiple Granularities[C]//Processings of the 6th Int'l Conference on Extending Database Technology.Valencia,Spain:Springer Verlag,1998:263-277.
  • 3Chatziantoniou D,Ross K A.Querying Multiple Features of Groups in Relational Databases[C]//Proeeedings of the 22nd International Conference on Very Large Data Bases.[S.l.]:Morgan Kaufmann Publishers Inc.,1996.
  • 4Zhang Shichao,Wang Rifeng,Guo Yanping.Efficient Computation of Multi-feature Data Cubes[C]//Proceedings of the 1st International Conference on Knowledge Science,Engineering and Mangement.Guilin,China:[s.n.],2006.
  • 5Micheline Kamber.数据挖掘概念与技术[M].韩家炜,译.北京:机械工业出版社,2001.
  • 6Chatziantoniou D, Ross K A. Querying multiple features of groups in relational databases [C].Proceedings of VLDB, 1996.
  • 7Ross K A,Srivastava D,Chatziantoniou D.Complex aggregation at multiple granularities[C].EDBT'98.American:Springer Verlag, 1998:263-277.
  • 8Zhang Shichao, Wang Rifeng, Guo Yanping.Efficient computation of multi-feature data cubes[C].Proceedings of International Conference on Knowledge Science, Engineering and Mangement,2006:612-624.
  • 9Deshpande P, Naughton J F. Aggregate aware caching for multi-dimensional queries [C]. Germany: EDBT'00,2000:167- 182.
  • 10Ng RT, Wagner A,Yin Y.Iceberg-cube computation with pc clusters[C].Califomia,USA: Proc ACM SIGMOD Int'l Conf,2001: 25-36.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部