期刊文献+

基于频繁的Markov链预测模型 被引量:10

Markov Chain Model of Navigation Based on Frequence
下载PDF
导出
摘要 预取技术通过在用户浏览当前网页的时间内提前取回其将来最有可能请求的网页来减少实际感知的获取网页的时间。传统的Markov链模型是一种简单而有效的预测模型,但同时存在预测准确率偏低,存储复杂度偏高等缺点。通过提出一种算法来减小存储空间,最后通过证明能有效减小存储空间。 Prefetching can reduce the retrieval time perceived by users by predicting and fetching the most likely web pages that are to be requested soon, while the user is browsing through the current displayed page. Markov chain is a simple and practical model, but it gives a little low prediction accuracy and requires a little high space complexity. An algorithm to reduce space was presented, finally, it demonstrated this algorithm can reduce space.
出处 《计算机应用研究》 CSCD 北大核心 2007年第3期41-43,46,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(60473031)
关键词 预取 马尔可夫模型 频繁模式树 prefetch markov model frequent pattern tree
  • 相关文献

参考文献4

  • 1Ming-KuanLiu,Fei-YueWang,DanielDajunZeng.Web Caching: A Way to Improve Web QoS[J].Journal of Computer Science & Technology,2004,19(2):113-127. 被引量:3
  • 2ZENG D, WANG Fei-Yue, LIU Mingkuan. Efficient Web content delivery using proxy caching techniques[J]. Systems, Man and Cybernetics, Part C, IEEE Transactions,2004,34(3) :270-280.
  • 3ZUCKERMAN I, ALBRECHT D, NICHOLSON A. Predicting user's requests on the WWW: proceedings of the 7th International Conference on User Modeling[ C ]. New York: Pringer, 1999:275-284.
  • 4ARUKLAI R. Link prediction and path analysis using markov chains [J/OL]. [2000] http://www9.org/w9cdrom/68/68.html.

二级参考文献83

  • 1Robinson J T, Devarkonda M V. Data cache management using frequency-based replacement. Perforvnance Evaluation Review, May 1990, 18(1): 134-142.
  • 2Williams S, Abrams M, Standridge C R et al. Removal policies in network caches for World Wide Web documents. In Proc. SIGCOMM'96. 1996.
  • 3Michel B S, Nikoloudakis K, Reiher P, Zhang L. URL forwarding and compression in adaptive Web caching. In Pvoc. IEEE INFOCOM 2000, Mar. 2000, 2: 670-678.
  • 4Hosseini-Khayat S. On optimal replacement of nonuniform cache objects. IEEE Trans. Computers, August 2000, 49(8): 769-778.
  • 5Jin S, Bestavros A. Popularity-aware greedy dualsize Web caching algorithms.Technical Report TR-99/09.Computer Science Department, Boston University, 1999.
  • 6Nanopoulos A, Katsaros D, Manolopoulos Y. Effective prediction of Web-user accesses: A data mining approach.In Proc. the Workshop WEBKDD POOl, 2001.
  • 7Mobasher B, Jain N, Han E, Srivastava J. Web mining:Pattern discovery from World Wide Web transactions.Technical Report TR-96050. Department of Computer Science, University of Minnesota, 1996.
  • 8Pal S K, Talwar V, Mitra P. Web mining in soft computing framework: Relevance, state of the art and future directions. IEEE Trans. Neural Networks, 2002, 13(5):1163-1177.
  • 9Yang Q, Zhang Z. Model based predictive prefetching.In Proc. 12th International Workshop on Database and Expert Systems Applications, 2001.
  • 10Cheng K, Kambayashi Y. LRU-SP: A size-adjusted and popularity-aware LRU replacement algorithm for Web caching. In Proc. 24th Annual International Computer Software and Applications Conference, 2000, pp.48-53.

共引文献2

同被引文献122

引证文献10

二级引证文献128

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部