期刊文献+

基于非线性相关发现的数据挖掘算法 被引量:1

Data Mining Algorithm Based on Non-linear Correlation Discovery
下载PDF
导出
摘要 现有的关联规则挖掘算法均致力于频繁集搜索,基于预先设置的支持度—置信度之上,具有很大的偶然性,不利于控制;并且关联规则没有体现数据整体的相关性。为了克服以上缺点,引入了非线性相关的概念,应用于不同相关类型规则的挖掘,且无须人为设置参数,从而大大提高了规则发现的实效性。 The existing arithmetic of association rules mining techniques all do take up with searching the frequent setting, especially on the basis of support-believe degree set beforehand. So the searching has much more chance going against control. In addition, the association rules are out of correlatino of holistic data. Importing the concept of non-linear correlation, applying to different kinds of rules mining, which conquered those shortcoming discussed above. The proposed method need not set parameter man-made, and it enhances the substantial results of finding the rules greatly.
出处 《计算机应用研究》 CSCD 北大核心 2007年第3期47-49,共3页 Application Research of Computers
基金 广东省科技攻关项目(A10202001) 广州市科技攻关项目(2004Z22D0091) 广东省自然科学基金资助项目(031454)
关键词 数据挖掘 关联规则挖掘 线性相关性发现 全局相关性 非线性相关发现 data mining association rules mining linear correlation discovery (LCD) holistic correlation non-linear correlation discovery (NLCD)
  • 相关文献

参考文献11

  • 1AGRAWAL R, IMIELINSKI T, SWAMI A N. Mining association rules between sets of items in large databases: proceedings of ACM SIGMOD International Conference on Management of Data, May,1993[ C]. Washington, D. C. ACM Press, 1993:207-216.
  • 2AGRAWAL R, SRIKANT R. Fast algorithms for mining association rules:proceedings of the 20th International Conference on Very Large Data Bases,Santiago, Chile, 1994 [C].[S.1.]:Morgan Kaufmann,1994:487-499.
  • 3PARK J S, CHEN M S, YU P S. An effective hash based algorithm for mining association rules:proceedings of the 1995 ACM SIGMOD International Conference on Management of Data, May, 1995 [ C ].San Jose, California:ACM Press,1995:175-186.
  • 4BRIN S, MOTWANI R, ULLMAN J D, et al. Dynamic itemset counting and implication rules for market basket data:proceedings of ACM SIGMOD International Conference on Management of Data,May, 1997 [ C ]. Tucson: AC M Press, 1997 : 255- 264.
  • 5HAN J, PEI J, YIN Y. Mining frequent patterns without candidate generation:proceedings of ACM SIGMOD International Conference on Management of Data, May ,2000 [ C ]. Dallas : ACM Press,2000 : 1-12.
  • 6BURDICK D, CALIMLIM M, GEHRKE J. MAFIA:a maximal frequent itemset algorithm for transactional databases:proceedings of International Conference on Data Engineering, HeideIberg, Germany,April,2001 [ C ]. [ S. I. ] : [ s. n. ] ,2001:443-452.
  • 7ZAKI M J, GOUDA K. Fast vertical mining using diffsets: proceedings of the Nineth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Washington, D. C. [ C ]. New York : ACM Press,2003:326-335.
  • 8SONG Mingjun, RAJASEKARAN S. Finding frequent itemsets by transaction mapping:2005 ACM Symposium on AppIied Computing,New Mexico, USA,2005 [ C]. [ S. 1. ] : [ s. n. ] ,2005:488-492.
  • 9CHIANG R H L, CHUA C, LIME P. Linear correIation discovery in databases : a data mining approach [J]. Data & Knowledge Engeering,2002,53(3):311-337.
  • 10LIU Bo, ZHENG QiIun, PENG Hong. A novel arithmetic of hoIistic correlation analysis:proceeding of the 4th International Conference on Machine Learning and Cybernetics, August 18- 21,2005 [ C ]. [ S.I. ] : [ s. n. ] ,2005:2145-2150.

同被引文献7

  • 1Bahensperger E. Credit rationing: issues and questions [J].Journal of Money, Credit and Banking, 1978, 10:170-183
  • 2Rudy S, James Y L. Thong, An approach to generate rules from neural networks for regression problems [J]. European Journal of Operational Research, 2004,155: 239-250
  • 3Pawlak Z. Flow graphs and data mining [J]. Transactions onRough Sets Ⅲ, LNCS 3400, 2005. 1-36
  • 4Bo L, Qilun Zh, Hong P. A Novel Arithmetic of Holistic Correlation Analysis [J]. In:The Proceeding of the Fourth International Conference on Machine Learning and Cybernetics, August 2005.2145-2150
  • 5Bondy J A, Murty M S R. Graph Theory With Applications [M].The Macmillan Press Ltd, 1976
  • 6Bankruptcy Creditors' Service Inc. http://bankrupt. com. [DB/OL]
  • 7王春峰,万海晖,张维.基于神经网络技术的商业银行信用风险评估[J].系统工程理论与实践,1999,19(9):24-32. 被引量:193

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部