期刊文献+

自由电子气模型计算金属材料冲击压缩极限压缩度 被引量:1

Calculation for shock compression limitation of metal materials based on a free-electron gas model
下载PDF
导出
摘要 用简单的自由电子气模型对金属铁、铜、铝、铅的冲击压缩特性进行了数值计算,计算结果表明材料并不能无限地被压缩,存在极限压缩度,随着压缩度的增加,在冲击压力增加的同时,冲击温度也急剧上升,限制了材料的进一步压缩,本文计算的这几种材料的极限压缩度为3.9. The Shock compression properties of the metals Iron、Copper、Aluminum and Lead respectively were calculated and evaluated numerically by a simple free-electron gas model. Calculations show that the materials cannot been arbitrarily compressed and have a shock compression limitation. When pressures increase the shock temperatures have also a steep rise to block continuous compression of materials and the maximum compression can be able to reach 3.9fold of initial density.
出处 《原子与分子物理学报》 CAS CSCD 北大核心 2007年第2期384-386,共3页 Journal of Atomic and Molecular Physics
基金 中国工程物理研究院冲击波物理和爆轰波物理国家重点实验室基金(9140C67120206ZS7502 51478678905ZS7501)
关键词 极限压缩度 自由电子气模型 shock compression limitation, free-electron gas model
  • 相关文献

参考文献8

  • 1Nellis W J.Shock compression of a free-electron gas[J].J.Appl.Phys.,2003,94(1):272
  • 2顾云军,卢铁城,蔡灵仓.自由电子气冲击压缩特性的理论计算[J].原子与分子物理学报,2005,22(1):91-94. 被引量:1
  • 3Johnson J D.Bound and estimate for the maximum compression of single shocks[J].Phys.Rev.E,1999,59(3):3727
  • 4Nellis W J.Shock compression of deuterium near 100 GPa pressures[J].Phys.Rev.Lett.,2002,89 (16):165502-1
  • 5Knudson M D,Hanson D L,Bailey J E,et al.Use of a wave reverberation technique to infer the density compression of shocked liquid deuterium[J].Phys.Rev.Lett.,2003,90(3):035505-1
  • 6Knudson M D,Hanson D L,Bailey J E,et al.Principal Hugoniot,reverberating wave,and mechanical reshock measurements of liquid deuterium to 400 GPa using plate impact techniques[J].Phys.Rev.B,2004,69:144209-1
  • 7刘会平,袁建民.高温稠密气态混合物质压强的计算[J].高压物理学报,2004,18(2):123-129. 被引量:3
  • 8Trunin R F.Shock compression of condensed materials[M].Cambridge:Cambridge University Press,1998.

二级参考文献12

  • 1[1]Thomas L H.The Calculation of Atomic Fields [J].Proc Camb Phil Soc,1927,23:542.
  • 2[2]Fermi E.Un Metodo Statistico per la Determinazione di Alcune Priorieta dellatome [J].Rend Ac Lincei,1927,6:602.
  • 3[3]Fermi E.Sulla Deduzione Statistica di Alcune Proprietà dellatomo.Applicazione alla Teoria del Sistema Periodico Degli Elementi [J].Z Physik,1928,48:73.
  • 4[5]Yuan J M.Self-Consistent Average-Atom Scheme for Electronic Structure of Hot and Dense Plasmas of Mixtures [J].Phys Rev E,2002,66:047401.
  • 5[6]Yuan J M.Opacity of Hot and Dense Plasmas of a Mixture Using an Average-Atom Approach [J].Chin Phys Lett,2002,19:1459.
  • 6[9]Dharma-Wardana M W C,Taylor R.Exchange and Correlation Potentials for Finite Temperature Quantum Calculations at Intermediate Degeneracies [J].J Phys C:Solid State Phys,1981,14:629.
  • 7[10]Bennett B T,Johnson J D,Kerley G I,et al.Recent Developments in the Sesame Equation-of-State Library [R].LA 7130,1978.
  • 8[11]Zink J W.Shell Structure and the Thomas-Fermi Equation of State [J].Phys Rev,1968,176:279.
  • 9[12]Lee C M,Thorsos B I.Properties of Matter at High Pressures and Temperatures [J].Phys Rev A,1978,17:2073.
  • 10Nellis W J. Shock compression of a free-electron gas[J ].J. Appl. Phys. ,2003,94(1) :272~275.?A

共引文献2

同被引文献7

  • 1陈森灿,叶庆荣.金属压力加工原理[M].北京:清华大学出版社,1991.
  • 2王从银,叶晓华.爆破基础理论[M].徐州:工程兵指挥学院,2003.
  • 3Nellis W J. Shock Compression of a Free-electron Gas [J]. J. Appl. Phys, 2003,94(1) : 272 -- 275.
  • 4Campbell J D, Ferguson W G. Temperature and Rate Effects in Mild Steel Philosophical Magazine [J],1970, 21:63--82.
  • 5Johnson G R,Cook W H. A Constitutive Model and Data for Metals Subjected to Large Strain Rates and High Temperatures[A]. Proc 7th Int Syrup Ballistics[C]. Neth erlands : Am Def Prep Org( ADPO), 1983 : 541-- 548.
  • 6王礼立.爆炸力学数值模拟中本构建模问题的讨论[J].爆炸与冲击,2003,23(2):97-104. 被引量:23
  • 7闫鸿浩,李晓杰,贾宏志,李洪升,奚进一.爆炸焊界面附近熔化层厚度估算[J].高压物理学报,2003,17(2):135-140. 被引量:5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部