期刊文献+

不同摄食水平条件下鮻的碳收支研究 被引量:8

Carbon Budget of Redlip Mullet(Liza haematocheila T.& S.) Under Different Feeding Rates
下载PDF
导出
摘要 在水温20℃和盐度30的条件下研究摄食水平对碳收支的影响。摄食水平分为饥饿(不投喂)、1、2、3、4(指日摄食量占鱼体重百分比)和自由摄食共6组,实验持续21 d。结果表明:摄食水平对碳消化率没有影响。碳转化率、净生长率与摄食水平之间呈显著正相关关系,在自由摄食状态下分别达到9.29%和10.41%。非粪便流失碳随摄食水平增加而显著降低。粪便碳占摄入碳比例变化不大,与摄食水平间无规律性关系。在自由摄食状态下,大部分摄入碳量均通过非粪便途径流失,其中大部分是呼吸过程消耗的。余下的部分中,粪便流失量和鱼体保存量各占一半。鱼体每增长1 g体重伴有979.56 mg碳流失。在自由摄食状态下碳收支方程式为:100摄入碳=9.29生长碳+9.69粪便碳+79.94非粪便流失碳。 Carbon budget of redlip mullet influenced by feeding rates was researched in the condition of water temperature 20 ℃ and salinity 30. Six feeding rates were set as follows: starvation, 1,2, 3, 4 (percent of body weight) and voluntary feeding. The experiment lasted 21 days. The results showed that feeding rate did not influence carbon digestion rate. The carbon conversion rate and net growth rate were positively related with feeding rate, and reached their peaks at 9.29% and 10.41% for the voluntary feeding group. The non-faecal loss carbon decreased with increasing feeding rate. The faecal carbon changed little with different feeding rates, showing an irregular relationship between them. With voluntary feeding, most intake carbon was lost through non-faecal way (e. g. respiration), and the rest was divided into faeces and growth evenly. With 1 g fish body weight gain, there was 979.56 mg carbon losing. The carbon budget of redlip mullet feeding voluntarily was 100 intake carbon = 9.29 growth carbon + 9.69 faecal carbon + 81.03 non-faecal loss carbon.
出处 《中国海洋大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第2期247-250,304,共5页 Periodical of Ocean University of China
基金 国家自然科学基金项目(40206001)资助
关键词 碳收支 摄食水平 Liza haematocheila T. & S. carbon budget feeding rate
  • 相关文献

参考文献5

二级参考文献126

  • 1刘敏,侯立军,许世远,欧冬妮,蒋海燕,余婕,Gardner WayneS.长江口潮滩有机质来源的C、N稳定同位素示踪[J].地理学报,2004,59(6):918-926. 被引量:46
  • 2陈庆强,孟翊,周菊珍,丁平兴.长江口细颗粒泥沙絮凝作用及其制约因素研究[J].海洋工程,2005,23(1):74-82. 被引量:28
  • 3林以安,唐仁友,李炎,董恒霖,关许为,陈英祖.长江口生源元素的生物地球化学特征与絮凝沉降的关系[J].海洋学报,1995,17(5):65-72. 被引量:31
  • 4Levy H.Photochemistry of the lower troposphere[J].Planet Space Sci,1972,20:919-935.
  • 5Wofsy S,McConnell J C,McEiroy M B.Atmospheric CH4,CO and CO2[J].J Geophys Res,1972,77:4477-4495.
  • 6Swinnerton J W,Lamontagne R A,Linnenbom V J.Carbon monoxide in rainwater[J].Science,1971,172:943-945.
  • 7Butler J H,Jones R D,Garber J H,et al.Seasonal distributions and turnover of reduced trace gases and hydroxylamine in yaquina bay,Oregon[J].Geochimica et Cosmochimica Acta,1987,51:697-706.
  • 8Wilson D F,Swinnerton J W,Lamontagne R A.Production of carbon monoxide and gaseous hydrocarbons in seawater:Relation to dissolved organic carbon[J].Science,1970,168:1577-1579.
  • 9Valentine R L,Zepp R G.Formation of carbon monoxide from photodegradation of terrestrial dissolved organic carbon in natural waters[J].Environ Sci Technol,1993,27:409-412.
  • 10Miller W L,Zepp R G.Photochemical production of dissolved inorganic carbon from terrestrial organic matter:Significance to the organic carbon cycle[J].Geophys Res Lett,1995,22:417-420.

共引文献39

同被引文献191

引证文献8

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部