期刊文献+

基于数据挖掘的乳腺X线图像分类研究 被引量:1

RESEARCH ON CLASSIFICATION OF DIGITAL MAMMOGRAPHY BASED ON DATA MINING METHOD
下载PDF
导出
摘要 研究了基于灰度空域统计特征以及灰度共生矩阵的医学乳腺X线图像的特征提取方法,以及这些特征对于数据挖掘中的两种算法——基于神经网络的算法和基于关联规则挖掘的算法在乳腺肿瘤检查和分类中的作用,结果表明这些特征在两种分类方法中均表现良好,对良性与恶性肿瘤分类的准确率均超过了75%.实验证明所提出的特征提取方法对于神经网络和关联规则的挖掘在乳腺X线图像分类中是有效的. This paper investigate three types of texture features.stastical descriptors and stastical feature from decomposition of image on wavlet and gray level co-occurrence matrix, and the use of different data mining techniques, neural networks and association rule mining in anomaly detection and classification. The results show that the two approaches performed well,obtaining a classification accuracy reaching over 75% percent for both techniques. The experiments we conducted demonstrate the use and effctiveness of data mining method based on the features we extracted from the digital mammography.
作者 李利明 李宏
出处 《陕西科技大学学报(自然科学版)》 2007年第1期117-120,共4页 Journal of Shaanxi University of Science & Technology
关键词 数据挖掘 医学乳腺X线图像 分类 关联规则 神经网络 data mining digital mammography classification association rule neural networks
  • 相关文献

参考文献6

二级参考文献16

  • 1Wang B T, Sun J G. Relative moment and their applications to geometric in shape recognition[J]. Journal of Image and Graphics, 2001,6(3):296-300.
  • 2Christopher M. Neural networks for pattern recognition[M]. Oxford: Clarendon Press, 1997.165-191.
  • 3Sluzek A. Identification and inspection of 2D objects using new moment-based shape descriptors[J]. Pattern Recognition Letter, 1995,16(3):687-697.
  • 4Hu M K. Visual pattern recognition by moment invariants[J]. IRE Transactions on Information Theory, 1962,8(2):179-187.
  • 5Liao S X, Pawlak M. On image analysis by moments[J]. IEEE Trans Pattern Analysis and Machine Intelligence, 1996,18(3):254-266.
  • 6Zhang J G, Tan T N. Brief review of invariant texture analysis methods[J]. Pattern Recognition, 2002,35(3):735-747.
  • 7Gevers T, Smeulders A W. Combining color and shape invariant features for image retrieval[J]. IEEE Trans Image Process, 2000,9(1):102-119.
  • 8缪绍纲.数字图像处理[M].成都:西南交通大学出版社,2001..
  • 9Chan Y T, Gadibbos L G, Yansounip. Identification of the modulation type of a signal.IEEE International Conference on Acoustic, Speech and signal Processing, 1985, pp.838-841.
  • 10C Louis, P Sehier. Automatic modulation recognition with a hierarchical neural network.IEEE International Conference on Acoustic, Speech and signal Proeessing, Vol.26,1994, pp.713-717.

共引文献74

同被引文献15

引证文献1

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部