期刊文献+

结构VAR的有向非循环图模型 被引量:1

Directed Acyclic Graph Modeling for the Structural Vector Autoregression
原文传递
导出
摘要 研究用图模型方法辨识结构向量自回归(VAR)模型,图中的结点表示不同时刻的随机变量,结点间的边表示其所表示的随机变量之间存在的因果相依关系.针对建立有向非循环图的问题,提出了一种基于回归分析的判断方法,用回归方程的回归平方和之差作为统计量,确定当前变量之间相依关系的方向.与R ea le的逐一判别法和A lessio的图搜索方法相比,文中提出的基于统计分析的方法简单易行,且可获得唯一的当前变量有向非循环图.最后以两组模拟序列为例,验证了所提出的方法是可行且有效的. In the problem of identification Structural Vector Autoregression using graphical models, the vertices denote random variables in different times, and the edges denote there exist causal dependence relations between the variables denoted by the vertices. A method to determine the direction of the relationships of the current variables is presented. The method is based on the theory of variable selection in regression analysis. The test statistics is the difference between the sums of regression square in the regression equation. Compared with the methods presented by Resle and Alessio, the method based on statistics can be performed easily and lead to unique directed aeyelie graph for the current variables. Finally, two simulation examples show the practicability and efficiency of the method presented in this paper.
作者 高伟 田铮
出处 《数学的实践与认识》 CSCD 北大核心 2007年第6期94-101,共8页 Mathematics in Practice and Theory
基金 国家自然科学基金(N0.60375003) 国家航空基础项目(N0.03153059)
关键词 结构向量自回归 图模型 偏相关 条件独立图 有向非循环图 structural vector autoregression graphical model partial correlation Conditional Independence Graph(CIG) Directed Aeyclie Graph(DAG)
  • 相关文献

参考文献8

  • 1郑忠国,童行伟,张艳艳.因果模型中因果效应的可识别性研究[J].中国科学(A辑),2001,31(12):1080-1086. 被引量:4
  • 2梁宇,郑忠国.一类因果模型的可识别性条件[J].数学物理学报(A辑),2003,23(4):456-463. 被引量:3
  • 3郑忠国,孙丽丽.带有反馈的因果模型中的独立性识别[J].应用数学学报,2000,23(2):299-310. 被引量:1
  • 4Swanson N R,Granger C W J.Impulse response function based on a causal approach to residual orthogonalization in vector autoregressions[J].Journal of the American Statistical Association,1997,92(437):357-367.
  • 5Reale M.A Graphical Modeling Approach to Time Series,Doctoral Thesis[M].Lancaster University,1998.
  • 6Reale M,Tunnicliffe Wilson G.Identification of vector AR models with recursive structural errors using conditional independence graphs[J].Statistical Methods and Applications,2001,10:49-65.
  • 7Reale M,Tunnicliffe Wilson G.The sampling properties of conditional independence graphs for structural vector autoregressions[J].Biometrika,2002,89:457-461.
  • 8Alessio M.Graphical Models for Structural Vector Autoregressions[R].LEM Woking Paper,2003/07.

二级参考文献9

共引文献5

同被引文献9

  • 1Granger C,Lin J L.Using the mutual information coefficient to identify lags in nonlinear models[J].Journal of Time Series Analysis,1994,(15):371-384.
  • 2Diks C,Manzan S.Test for serial independence and linearity based on correlation integrals[J].Studies in Nonlinear Dynamics & Econometricsl 2002,(6):1-20.
  • 3Swanson N R,Granger C W J.Impulse response function based on a causal approach to residual orthogonalization in vector autoregressions[J].Journal of the American Statistical Association,1997,92(437):357-367.
  • 4Reale M.A Graphical Modeling Approach to Time Series[D].Lancaster University,1998.
  • 5Reale M G.Tunnicliffe wilson,identification of vector AR models with recursive structural errors using conditional independence graphs[J].Statistical Methods and Applications,2001,(10):49-65.
  • 6Reale M G,Tunnicliffe Wilson.The sampling properties of conditional independence graphs for structural vector autoregressions[J].Biometrika,2002,(89):457-461.
  • 7Alessio M.Graphical Models for Structural Vector Autoregressions,LEM Woking Paper 2003/07.
  • 8Palus M.Testing for nonlinearity using redundancies:Quantitative and qualitative aspects[J].Physica D,1995,(80):186-205.
  • 9Palus M.Detecting nonlinearity in multivariate time series[J].Physics Letters A,1996,(213):138-147.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部